[수학의 기준] 개념을 효과적으로 공부하는 방법
개념을
통해 무엇을 배워야 할까?
안녕하세요, '수학의 기준'의 백경린(Dost)입니다.
지난 칼럼에 이어 이번에는 개념을 공부하는 방법에 대해 좀 더 자세히 다뤄보고자
합니다.
수학공부에
관한 상담을 하다보면 이런 하소연을 하는 학생들을 종종 만나게 됩니다.
'수학을
잘하려면 무엇보다 개념을 정확히 이해하고 증명까지 할 줄 알아야 한다는 얘기를 듣고,
교과서의
모든 개념들을 증명까지 완벽하게 독파하였습니다.
그런데,
시험
성적에는 별다른 변화가 없습니다.
대체
무엇이 문제인가요?’
1.
개념에
사용된 논리는 무엇인가!
문제는
어떤 개념에 대한 증명 과정을 이해하고 직접 설명까지 할 수 있더라도 거기에 쓰이고 있는 논리가 무엇인지를 파악하지 못했다면 실전에서는 거의
쓸모가 없다는 사실입니다.
(학기
초이니 가능한 한 쉬운 예를 들어 보겠습니다.)
가령,
등차수열
{an}의
일반항이
an=a1+(n-1)d
(a1:첫째항,
d:공차)
임은
누구나 쉽게 증명할 수 있는 내용입니다.
하지만,
위와
같은 공식을 증명하고 이해했다고 해서 등차수열에 관한 문제들을 쉽게 해결할 수 있는 것은 아닙니다.
실제로
변별력을 가지는 문제들을 해결하는데 사용되는 것은 단순한 증명 과정이 아니라 그 안에 담겨 있는 논리이기 때문이지요.
등차수열의
일반항에 담겨 있는 논리란 임의의 n번째
항을‘결정하는
요소’가
무엇인가로 요약될 수 있습니다.
물론
그 결정요소는 일반항의 표현에 나타나 있듯이‘첫째항과
공차’입니다.
즉,
3, 5, 7, 9, 11, …
과
같은 수열의 100번째
항을 알고 싶다면
3+2·0,
3+2·1,
3+2·2,
3+2·3,
3+2·4,
…
과
같이 각 항을 결정하는 요소로 나타내는 것이 훨씬 효과적이라는 얘기입니다.
∴ a100= 3+2·99
2.
그
논리는 얼마나 효율적이며 보편적인가!
사실
어떤 대상을 그것의 결정요소로 표현하는 것은 수열뿐만 아니라
다른
수학적인 개념에서도 공통적으로 확인할 수 있는 논리입니다.
이것은
많은 개념들을 이해하는데 그다지 많은 논리가 필요하지 않다는 뜻이기도 합니다.
그렇다면
별로 대단할 것도 없어 보이는(?)
위와
같은 논리가 변별력 있는 문제를 해결하는데 얼마나 효과가 있을까요..
2011학년도
수능 (오답률
50%)
2이상의
자연수 n에
대하여 집합 {3(2k-1)
|
k는
자연수,
1≤k≤n}의
서로 다른 두 원소를 곱하여 나올 수 있는 모든 값만을 원소로 하는 집합을 S라
하고,
S의
원소의 개수를 f(n)이라
하자.
예를
들어,
f(4)=5이다.
이때,
f(2)+f(3)+…+f(11)의
값을 구하시오.
[4점]
Sol》우선,
3(2k-1)꼴의
서로 다른 두 원소를 곱하여 나올 수 있는 값은 서로 다른 지수의 값들(2k-1)의
합과 같습니다.
(예)
31×33=31+3)
이때, 예시로 주어진
f(4)의
값이 왜 5가
되는지 분석해 봅시다.
f(n)의
규칙성이 존재한다면 f(4)일
때의 규칙성이 f(2),
f(3), …,
f(11)일
때도 동일하게 적용되고 있을 테니까요.
(주어진
예시를 이용하여 규칙성을 추론하는 것은 실수를 미연에 방지할 수 있는 좋은 수단이기도 합니다.)
n=4일
때,
3(2k-1)꼴에서
지수의 값만 적어보면
1, 3, 5, 7
인데,
여기서
서로 다른 두 원소를 더하여 나올 수 있는 결과가 5가지임을
효율적이고 정확하게 확인하는 방법은 무엇일까요?
또,
그 방법을 n이
다른 값을 가질 때도 일반적으로 확장시킬 수 있을까요?
그 길이 잘 보이지
않는다면,
앞서
설명한대로 첫째항이
1이고
공차가 2인
등차수열
{2k-1}을
그 결정요소로 나타내 봅시다.
즉,
1+2·0,
1+2·1,
1+2·2,
1+2·3
이므로,
여기서
서로 다른 두 원소를 택하여 더하게 되면
2+2·(0+1),
2+2·(0+2),
…,
2+2·(2+3)
공차가
항상
2이고
항의 개수가‘(2+3)’인
등차수열이 만들어진다는 것을 정확히 확인할 수 있습니다.
같은
방식으로 n=m이면
2+2·(0+1),
2+2·(0+2),
…,
2+2·(m-2 + m-1)
이므로
공차가 항상 2이고
항의 개수가‘(2m-3)’인
등차수열이 만들어지게 됩니다.
∴ f(m)=2m-3
따라서
구하는 값은 1부터
연속된 10개의
홀수의 합을 나타냅니다.
∴ f(2)+f(3)+…+f(11)=102
문제의
난이도가 높아질수록 개념 속에 담겨 있는 논리들을 이용하는 것이 얼마나 효과적인지 더욱 확실히 체감할 수 있습니다.
아무리
많은 지식과 유형을 익혀도 자신의 실력이 늘고 있다는 느낌을 받지 못한다면, 다시 개념으로 돌아가 증명 과정이나 결론 속에 담겨 있는 실제적인
논리가 무엇인지를 잘 파악해 보시기 바랍니다.
그리고
다양한 문제를 통해 자신이 이해한 논리가 얼마나 효율적이며 보편적으로 사용될 수 있는지를 꼭 확인해 보아야 합니다.
이렇게
자신의 논리를 다듬어가다 보면 어느새 전혀 다른 수준에서 문제를 이해하고 해결하는 자신을 발견하게 될 것입니다!
~ 읽어주셔서 감사합니다 ~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난 z플립6
-
진짜 매일 잠도 못 잘 정도로 스트레스 받아요.... 제발 40점... 제발...
-
88점
-
바롲 저였군뇨
-
요즘에 거의 대탈출만버는듯
-
자러갈게요 2
다들 좋은 밤 되세요
-
1칸인 점수가 나보다 높다고?
-
이제 자야지
-
대성에서 국어 인강을 들으려고 하는데 김승리가 좋나요 유대종이 좋나요 현재 등급은...
-
물론 여자들이 좋아할만한 아이돌같은것도 딱히 관심없어서 특정 관심사가 엄청 통한다...
-
언매 처음 시작하는 노베입니다 12월 안에 개념 한바퀴 돌리고 싶은데 2025 대비...
-
술만안마신다고빼는거좀그러네...
-
대체적으로 11
과탐 강사들은 호감인데 사탐 강사들은 왤케 비호감이냐
-
헬스용품 살 때 계속 필요하네
-
옯스타 만들면 7
뭘 하는거죠???
-
삼수하면서 진짜 열심히 한거 같은데.... 참 안오르는 과목은 쉽지 않네요. 다들 파이팅입니다
-
텔그 현상황 ㅋㅋㅋ 진짜 벽느껴짐
-
저 진짜 크림왕창들어간거나 팥 왕창들어간 빵 좋아함 1
진짜 빵순이어서
-
진짜 자야겠다 2
이러다 밤낮 바뀌겠어
-
유사스포츠라서 그런가 흠,,,
-
겨울 방학때 최대한 성적 올려야 하는데
-
학원에서 진짜 이렇게 분석한 거에요?
-
질문받습니다 7
감사합니다.
-
자기전에 질받 받을래뇨 17
분명 질문 많이 해주겠지?
-
예비고3 메가 설명회 가는사람 있음? 궁금한거 있는데 총 인원이 몇명임? 안내문에 안써있음;
-
엄마 몰래 버거킹 더블불고기와퍼 먹음뇨 근데 저녁에 몸무게 재니까 오히려 살 빠져 있어서 놀랐음뇨
-
왜 올해만 이래 0
아니 올해 수학 작수랑 비슷한데 왜 올해만 88 89냐고고고고고고ㅠㅠㅜㅠㅠㅠㅠㅠㅠ 85로 해줭.
-
금사빠였는지 좋아하게된 이유를 모르겠음 근데 좋아했다고 하기에는 애매하고 걍 관심만...
-
프로미스나인 4
영원하라
-
네
-
누가봐도 나밖에 만들 사람 없음
-
하 ㅅㅂ
-
최후반까지 기본에 충실했던 사람은 결국에 웃는다.
-
아씨발 12
아침에 보일러 틀어놓고 나갔다가 방금 퇴근함...
-
90 92 88 47 50인데 서울대 낮은과도 못감 5
언미물1화1 서울대가 이렇게나 빡세구나... 농대가 2-3칸 뜬다..
-
ㅠㅠㅠ
-
국어가 93인지 95인지 모르겠네 95면 어떤 최악의 경우라도 선방ㄱㄴ이고 93점에...
-
저기요 2023 아조시.
-
아 프나 에반데 3
이제 막 입덕햇는데 이제 이 야랄 못본다고? 아..
-
그냥 집에서 재미로 쳐봤는데 3 나오려나...
-
인강 처음봐요 여기저기 찾아보다 혼란만 가중 수시러임.. 메가랑 대성 있음 지금까지...
-
이번 부산 여행에서는 국밥 말고 다른 것도 먹어 볼까요 10
저번에 2박 3일 부산 혼자 여행 갔을 때 삼시세끼 다 국밥만 조졌는데 흠... 아...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 과거의 나야 이런 댓달 시간에 공부 좀 하라고
-
지금이더제정신이아닌거같아
-
눈 위에 피멍 들고 아직 큰 붓기 있음
-
선호도 순으로 연대 언더우드 hass> 서성 상경 > 서성한 공대 > 서성한 기타과...
-
음…
-
먹도록 하자
-
친구 부모님한테 인정받아보신분
-
설마 안 나오겠어…? (12/6에 끝남) 미적 고정2 목표를 향해…!
잘 읽었습니다 유용하네요
이좋은글에 왜 댓글이없죠?ㅠㅠ 감사합니다 잘읽었어요!ㅎㅎ
그래도 알아보시는 분들이 있어서 다행입니다ㅎ
ㅠㅠ앞으로도 학습관련 게시물 많이 올려주세요~~꼭꼭 챙겨볼게요!ㅎㅎ
스크랩 ~~~~~
출처만 정확히 ~
굿굿굿굿굿!
이런 게시글의 논지를 담고있는 책 추천 좀 해주세요..
오르비 북스(Books)에 있습니다.
좋은글 잘 읽었습니다!!!
정말정말 좋은글입니다.
수능수학은 이 글안에 해법이 다 있다고 해도 될듯하네요