무료특강은 못참지 - 목요일 18:30 라이브
안녕하세요.
유튜버 아니 수학강사
상승효과 이승효입니다.
유튜버는 농담이긴 한데요. 하하
지난주 선택과목 무료특강을 유튜브 라이브로 했더니
무려 300분가까이 신청을 해주셔서
구독자 150명 늘어주시고~
채팅으로 소통하면서 저도 즐겁게 수업했답니다.
도움이 되었다면 댓글로 소리질러~~~!
지난주 영상은 곧 비공개 처리 되니까
아직 못본 친구들은 얼렁 보시고.
아쉽게 기회를 놓친 학생들로부터의 문의가 많아
특히 반응이 좋았던 미적이를 위해
무료 특강을 다시 하려고 합니다.
확통/기하러도 조만간 또 할테니까 잠시 대기!
일시 : 4월7일(목요일) 6시30분부터~
시청방법 :
유튜브 "이승효의 상승효과" 스트리밍
내용 : 지난주 무료 특강에 이어서
극한과 미분법도 다루고 새로운 주제도 할거에요.
1차 무료 특강 들었다면 이번에 더 탄탄해질거고
새로 듣는 학생도 따라올 수 있도록 설명할겁니다.
내용은 의견 수렴하면서 진행할 예정이고요.
댓글과 이번 라이브 시청자가 많으면
매주 지속적으로 할 생각도 있으니
무료 특강 계속 듣고 싶다면
이번주에 꼭 라이브로 접속해 주시길!!!
이참에 목요일은 스케쥴 빼고 상승효과 가즈아!
마침 새로운 영상이 올라갔으니 가볍게 시청해주세요~
유튜브 채널 구독과 알림설정까지 해주시면
특강 라이브 방송이 켜질때 공지가 간답니다.
그럼 조만간에 만나요!!
<이승효T 간단 소개>
서울대 컴공 졸업
도쿄예대 음악대학원 박사수료
현) 디오르비 출강
2021년 오르비 단과 매출 1위
전) 메가스터디 러셀 출강
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
-
몇명있았을까
-
ㅇㅈ 2
완
-
인스타도 그냥 내가 맞팔하고싶은사람만 하면 안되나? 싶음 N수할때 나한테 연락해준...
-
이거 가시나요?
-
아 ㅇㅈ메타였네 4
이걸 탑승 못했네 아쉽
-
올해는운동도열심히좀하고
-
수학 2등급이상만 20
올해수능수학 공통에서만 15,20,21,22를 못풀었거든요..뭐가 문제일까요...
-
날지켜봐줘
-
진짜 자야지 2
진짜임! 아마도..
-
후회 몇가진 내 정신 상태 밑천 일어나서 집어든 폰으로 용서와 약을 구했지우리 관곈...
-
약대가서 꿀빤다 ㅇㅈ? 한의학 그거 다 사이비 아닌가.
-
휴게소가 도로 위에 걸쳐있음
-
제발요
-
ㅇㅈ)) 7
펑 따봉
-
올해는 한까없나 1
한의대 컷좀 마구 낮춰줘요
-
많이 읽은 건가요?
-
한문제만 더 맞추면 탐구평균 2띄워서 고대설대 최저 맞추는데 에라이 씨잎새과목 왜...
-
엑셀로 하는건 알겠는데 잘 아는 사람읶음?
-
https://orbi.kr/00065763225 이 글을 쓴 사람도 교원대에서...
-
원점수(메가기준 백분위) 화작 93(95) 확통 96(97) 영어 4 경제...
-
ㅇㅈ했으니 0
-
재수한겁니다 공통은 아깝다는 생각이라도 드는데 미적은 아깝지도 않습니다 삼반수를 할...
-
진짜에요?싸서 그런가
-
이거 가능성 있다고 보시나요...전 아무리 봐도 이 정도 난이도는 아닌 거 같은데..
-
마크재밌당 2
크리에이트 모드랑 노르트스타 끼고 공장짓는중
-
수학 17번 틀린거 진짜 미쳐버릴거 같다 진짜 하.....
-
훌리님들 2
님들같으면 서울사는데 건국대 높공 vs 경희대 자연대 (서울캠) 중에 어디감
-
흑역사 진짜 많다ㅋㅋㅋㅋㅋ 어후 빨리 학교옮겨야지..
-
세계를 속여라 2
나는 매드사이언티스트 호오인 쿄마!
-
프사완 0
흐흐
-
히히
-
맞다고 생각함뇨이 아직 이대가 갖는 여대 1등자리 아우라가 20대 후반 누나들한텐...
-
육군 질문 6
해군 출신이라 잘 모르는데 점프 뛰다가 들키면 어떻게 되나요?
-
101점임
-
의외로 잘 쓰네요
-
ㅋㅋ 작년에 개꿀잼이었는데
-
훨씬 부담도 덜 가려나 화작에 기하 근데 기하 멘탈 중요함?
-
그나마 인생 덜 조져서 다행이네..
-
다음주 신검인데 3
4급은 어케해야 뜨는거임 ? 돼공도 요즘되나 ㅈㄴ가기싫음
-
다들 닉 유래 적기 27
ㄱㄱ 나는 그냥 미코토 프사에 어울릴만한걸로 정함
-
전역 얼마 안남은 말년병장입니다 수능 끝나니까 할게 없네요 현재 학적은 인하 아주...
-
원점수 언매 93 미적 88 영어 68 물리 45 지구 46
-
아무거나 고 선넘ㄱㄴ
-
4합9vs3합6 0
전자는 과탐 1개 후자는 과탐 평균 절사 뭐가 더 어려울까요?
-
괜찮으려나..
선생님, 이번에도 동영상으로 부탁드려요 ㅠㅠ 감사합니다
라이브로 접속해주세요~
선생님 이번 동영상 내일까지는 들을 수 있겠죠?ㅜㅜ
네네~ 얼른 듣고 또 와요
선생님 안녕하세요! 다름이 아니라 중학도형(수1 삼각함수의 활용)을 공부할 때 정리/정의/증명을 주의 깊게 풀어야 하는 것은 알겠습니다.그런데 시험 해설강의를 보면 선생님들은 보조선을 너무 잘 그으시고 구해야하 하는 값을 향해 알고리즘 처럼 쭉쭉 가시는데 이런 실질적인 보조선과 중학도형의 실전적 공부는 어떻게 해야 할까요? 특히나 삼각함수 활용은 기출문제가 많이 없어서 제가 태도나 행동영역을 배워도 어떻게 체화하고 적용할 지 모르겟습니다!
선생님께서도 답변을 주시겠지만 제가 아는 선에서 답변 드리겠습니다.
일단 보조선을 긋는 이유가 뭘까요?
도형 풀이의 기본은 결국 내가 모르는 정보들을 아는 정보들로 표현하는 것인데(정의/정리/증명의 원리들을 이용하여) 그러려면 내가 모르는 정보를 아는 정보로 표현할 수 있는 보조선을 그어야겠지요.
예를 들어, 원과 접한 어떤 직선이 주어져 있다고 해보면, 원의 정의는 중심과 반지름으로 정의되기 때문에, 또한 접점에서 수직인 직선은 원의 중심을 지난다는 성질(정리)이 있기 때문에, 접점으로부터 원의 중심까지 이은 선이 등장할 수 있겠죠.
이등변삼각형의 경우 밑변의 수직이등분선이 꼭짓점을 지난다는 성질을 통해 꼭짓점에서 이등분선을 그으면 밑변이 수직이등분되는 것이구요.
실전적 공부라는 것도 결국 이런 식으로 생각하시면 될 것 같습니다. 결국 도형의 성질을 잘 알고 있으면 보조선이 그어질 포인트는 대략 보인다는 거죠.
기출 소스같은 경우는 조금만 생각을 확장하면 교사경, 고2 기출이나 EBS 문항들도 활용할 수 있을 것으로 보입니다. 그리고 오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요.
-지나가던 한 수학과 재학생이 올림
정성스러운 답변 감사합니다 정말 유익했어요!!
훌륭한 답변 감사합니다 :) 제가 덧붙일게 없네요~
오히려 기출 문제가 많이 없기 때문에 배워야 할 관점을 더 명료하게 볼 수 있을 것으로 보구요. -> 맞습니다.
허걱 이건 무조건이다
혜교님 어서와~
선생님 혹시 현강질문 관련해서 쪽지보냈는데 확인한번만 부탁드려용
답변드림~
샘의 에너제틱한 모습에 감동받았습니다. 감사합니다:)
에너지 끌어올려~~~!