[이동훈 기출] 한 평면에 포함되는 3개의 공간벡터 (공도회 심층분석)
이동훈기출_개념편_한 평면에 포함되는 3개의 공간벡터에 관하여.pdf
이동훈 기출문제집 atom 책 페이지
---
공도회로 알려진 수능 실전 이론에 대한 분석입니다.
이동훈 기출문제집의 부교재(무료PDF)로 제공되는
42개의 수능 실전 이론 중에서 마지막 주제에 해당합니다.
나머지 41개의 주제들은 7월 초 ~ 8월 말에 걸쳐서
이동훈 기출문제집 atom 책 페이지를 통하여
꾸준하게 제공될 예정입니다.
( -> http://atom.ac/books/3888/ )
---
공도회를 소재로 하는 문제는
평면의 결정조건 + 각의 크기의 최대최소
로 접근하는 정형화된 풀이가 존재합니다.
(사실 모든 수능 문제의 풀이는 공식화되어 있는 것으로 봐야겠지요.
교과서에 바탕한 전형적인 풀이를 적용하면 항상 풀리게 출제되니까요.)
일차결합의 관점에서 공도회를 해석하면
벡터의 정의, 연산부터 내적까지,
전 과정을 이용할 수 밖에 없으므로, 공도벡을 통합적으로
학습할 좋은 기회가 됩니다.
(만약 벡터가 평면의 법선벡터로 주어지면 평면의 방정식까지
포함하게 됩니다.)
사실상 공식화 된 이론으로 문제를 빠르게 해결하는 것도 중요하지만,
그 이론의 증명과정에 대한 이해와 연습도
수능 학습에 반드시 필요하다고 생각합니다.
실전에서 어떤 상황이 닥쳐도 헤쳐나갈 수 있는 힘을 키워야 하니까요.
이동훈 기출문제집에 수록된 모든 공도회 관련 문항의 해설은
위의 이론에 기반하여 작성되었습니다.
공도회에 대한 해석이 타 기출문제집과의 가장 큰 차이점이고,
위의 설명을 낯설고 어렵게 생각하는 분들도
적지 않은 것으로 알고 있습니다만,
사실 위의 이론을 알아두면 벡터의 내적 전반에 대한
이해의 폭을 넓힐 수 있습니다.
제가 기출문제집의 이론편을 만드는 이유는
이동훈 기출문제집의 해설이 어떤 통일된 관점과 이론에 바탕하여
작성되었는가를 보여드리기 위함입니다.
장기간에 걸친 수능/평가원 기출 해설 작업을 통해서
축적된 생각들을 체계적으로 보여드리고 싶은 욕심도 있습니다.
올해 여름에 무료 공개되는 42개의 실전 개념은 개정 과정을 거쳐서
2019 이동훈 기출문제집에 수록될 예정입니다.
학습에 도움이 되길 바랍니다.
감사합니다~ :)
+ 참고로 42개의 주제는 다음과 같습니다.
(01) 수학2(함수) 유리함수, 무리함수와 격자점
(02) 수학2(수열) 등차등비수열의 전형적인 문제 (+등차중앙, 등비중앙)
(03) 수학2(수열) 합에서 일반항 유도하기
(04) 수학2(수열) 수학적 귀납법으로 증명하기
(05) 수학2(수열) 발견적 추론 (수를 나열한다.)
(06) 미적분1(수열의 극한) 수열의 극한과 급수의 계산
(07) 미적분1(수열의 극한) 등비급수와 중등기하
(08) 미적분1(함수의 극한과 연속) 함수의 연속에 대한 전형적인 응용문제
(09) 미적분1(함수의 극한과 연속) 사이값 정리의 활용
(10) 미적분1(다항함수의 미분법) 미분계수와 도함수의 다양한 문제들
(11) 미적분1(다항함수의 미분법) 접선의 방정식 (+최단거리)
(12) 미적분1(다항함수의 미분법) 평균값 정리의 활용
(13) 미적분1(다항함수의 미분법) 3차, 4차 함수의 그래프 (+인수정리)
(14) 미적분1(다항함수의 미분법) 미분가능성 (+절댓값)
(15) 미적분1(다항함수의 미분법) 미분법의 방정식, 부등식에의 활용 (문과)
(16) 미적분1(다항함수의 적분법) 구분구적법을 정적분으로
(17) 미적분1(다항함수의 적분법) 적분과 미분의관계, 미적분의 기본정리에 대한 전형적인 응용문제
(18) 미적분2(지수함수와 로그함수) 지수로그함수의 수학1 내적 연관
(19) 미적분2(지수함수와 로그함수) 삼각함수의 수학1 내적 연관
(20) 미적분2(삼각함수) 삼각함수, 지수로그함수의 극한과 중등기하
(21) 미적분2(미분법) 역함수의 미분법 총정리
(22) 미적분2(미분법) 사이값 정리, 평균값 정리의 활용
(23) 미적분2(미분법) 합성함수의 연속성과 미분가능성
(24) 미적분2(미분법) 접선의 방정식 (+변곡점, 점근선의 관점)
(25) 미적분2(미분법) 초월함수 그래프 (+빠르게 그리는 방법)
(26) 미적분2(미분법) 이계도함수에 대하여 (+함수의 볼록성)
(27) 미적분2(미분법) 미분법의 방정식, 부등식에의 활용 (이과)
(28) 미적분2(적분법) 치환적분법, 부분적분법의 전형적인 응용문제
(29) 확률과 통계(순열과 조합) 합의법칙, 곱의법칙 (+수형도)
(30) 확률과 통계(순열과 조합) 조합, 중복조합, 순열, 중복순열에 대하여
(31) 확률과 통계(확률) 확률의 계산 (+밴다이어그램)
(32) 확률과 통계(확률) 확률의 전형적인 응용문제 (+개념정립)
(33) 기하와 벡터(이차곡선) 이차곡선의 정의와 중등기하
(34) 기하와 벡터(이차곡선) 교과서에는 없는 이차곡선의 성질
(35) 기하와 벡터(평면벡터) 벡터의 일차결합 (+개념정립)
(36) 기하와 벡터(평면벡터) 벡터 내적의 최대최소 (+상수변수)
(37) 기하와 벡터(공간도형) 공간도형을 관찰하는 법 (단면화, 정사영, 전개도)
(38) 기하와 벡터(공간도형) 공간도형 개념정립
(39) 기하와 벡터(공간벡터) 좌표공간 개념정립
(40) 기하와 벡터(공간벡터) 공간에서의 직선, 평면, 구의 방정식 (+위치관계)
(41) 기하와 벡터(공간벡터) 두 평면이 이루는 각의 크기를 구하는 3가지의 방법
(42) 기하와 벡터(공간벡터) 한 평면에 포함되는 3개의 공간벡터에 관하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
갑자기 피부가 트네 왜지
-
내년에 인설 공대 목표로 수능보는데 조합 한번씩만 추천드려요!
-
충분히 재공되나요???
-
이번 6모 수학 0
10 12 13 14 15 19 20 21 22 28 29 30 틀렸는데 (단순...
-
필수 어휘로 간주되는 고전 어휘는 대부분 암기했음에도 예전 기출을 풀 때 처음 보는...
-
독서론 화작 ,문학 ,독서 순서임미다
-
물론 장점도 있지만 들어도 애매하고 그런데 사탐 저둘빼고는 상관없다고 생각함
-
브릿지 수학 0
확통입나다, 10문제중 타율이 한 6~7문제 정도 되는데 실력이 몇등급정도...
-
ㅈㄱㄴ…?
-
생윤인지 사문인지 매년 오개념이슈 전통놀이처럼 터지는거 보면 4
오개념 따위 있을수가없는 화1이 천사같다
-
상상 0
퀄 더 좋은 거
-
경외심느끼면서 피하게됨.... 그 사람들 기분은 어떨까
-
이런거 쳐써놓으면 걍 풀어줄라다가 포기하기누르고 나옴 그냥
-
ㅠㅠ 또 나만 마렵지..
-
1회 92 2회 96 3회 93인데 4회 난이도 걍 시발이네... ㅠㅠ 막...
-
한국식 MBTI 5
일단 난 SNJT인듯 마지막껀 좀 애매하긴 하네
-
강릉 천안 익산 전주 아웃서울 하고싶다
-
진짜 어캄? 느긋한가 좋아하면 수능판 잘 안맞는건가? 방금 푼 실모 예시로 들면...
-
분명 일반인을 위한 책인데 난 왜 책 내용이 머리에서 튕기지 싶었음
-
잠 깨는거 일어나는 거 책펴는 거 연필쥐는 거 의자에 앉는 거 샤프심빼는 거 지우개...
-
한 주도 빠짐없이 수업 도중에 화장실 감
-
30 못풀뻔했는데 운좋게 보여서 겨우 100점 96분 걸림
-
지듣노 0
https://youtu.be/SK6Sm2Ki9tI?si=r9aM3OeYmAicamM...
-
고1 통합과학 요놈때문에 사탐이랑 결혼하기로 결정함 내신도 통사1 통과 5였음 아까...
-
오늘 운세 7
36점 진짜 억울핑도 이렇게 억울하진않겟다
-
회차까지 추천해주면 감사띠
-
연세대신촌못가면 다 죽는거다 설령 결과마음에안드는데 기분은 괜찮아도 사시미칼로 팔...
-
ㅠㅠ 또 나만 어렵지..
-
인강쌤들 강의.자료로 충분하죠?
-
어떤 문제는 도덕 배운 초등학교 고학년들도 풀 수 있는 수준인데 어떤 문제는 서울대...
-
교육개혁에 대해 알아보자. 그만 알아보자.
-
오밐추 1
행복한 하루 되세요!
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
솔직히 지금껏 1도 체감 못하고 있다가 가족이랑 친한 후배들이 수능선물,응원 메세지...
-
ㄹㅇ 어지럽네 ㅋㅋㅋ
-
+ 국가장학금 폐지 난 걍 자퇴할듯
-
수학은 괴물들이 많더군요. 어지간한 난도의 시험은 시간이 남는 괴물들.......
-
구라안치고 망하지않아도 결과 마음에 안들어도 자살/자해 최소 둘중 하나는...
-
실모 칠면 종류에따라 다르긴하지만 1이 80%이상정도 나오는데 님들은 어떤편인지...
-
오늘은 속도전 0
후딱후딱 끝내야징
-
이가ㅁ 12차 0
94 독서 2틀인데 수능날 2 가능할까
-
https://orbi.kr/00018415247 링크 타 들어가보면 알겠지만 진짜...
-
여러분 예열지문은 절대안나올 것 같은걸로 들고가세여 12
유명하거나 자주봤던 기출 지문 ㅊㅊ합니다 왜냐면 작년에 예열로 이비에스 인문 지문...
-
국어 기출 0
한번 더 볼까말까 이미 여러번 봤고 파이널 교재에도 전부 있음… 간쓸개랑 실모...
-
난이도 원래 이렇게 어려운가요?? 60점대...
-
...
-
퀄 상관 없이 뭐가 더 어렵나요 더 어려운거풀고싶아서요 둘 다 있긴 해서 시즌몇에...
-
jo79sd 같이 커피 받아요!
-
환상적이다
오래 기다리신 만큼 완성도 높은 원고로 보답하겠습니다. 감사합니다~ ^^
기출문제집 매우 잘 보고있습니다
이 책들을 산 후로 비로소 수학공부를 제대로 하고 있다는 느낌을 받았어요
감사합니다. 공부하시면서 의문이 드는 점이 있다면 언제든지 문의하여주세요. 더 좋은 책을 만들기 위하여 노력하겠습니다. ^^~
문제집 잘 쓰고 있어요. 좋은 자료들 감사합니다
더 좋은 책을 만들기 위하여 노력하겠습니다.
내용 너무 좋습니다^^