풀만한 수열의 극한 문제 하나 드립니다~
답.txt
제가 만든거 아닙니다..그래서 퀄리티도 그렇게 나쁘지 않을겁니다..
원문링크는 아래와 같습니다.
https://www.artofproblemsolving.com/community/u296133h1220663p6119372
링크 댓글에 제가 허접한 영어실력으로 풀이를 달긴 했는데 저의 작문 실력을 보이고 싶지 않으니 그냥 무시하시면 됩니다..답은 첨부파일에!
(링크가 뭐 엄청 대단한 문제처럼 돼있는데 실상은 그렇진 않은 것 같습니다..)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글리젠 왜 이래 0
ㅠ
-
부두술 진행
-
딸갤이라고 성교육 아저씨 있음.아래는 영상 견본임....
-
야식먹기vs자기 12
-
사문 1순위인 데엔 이견이 없을 듯하고 그 다음은 뭐가 있을까요?
-
이번 생은 호모로맨스 에이섹슈얼 안드로진이라 힘들다
-
난 돈 많이 벌어서 연하 남편을 리버스 취집 시키고 싶었다
-
이수린씨 이름이 너무 이쁜걸 어떡해요,,
-
그동안 설대는 안 알아봤어서 감이 안 오는데 대략 어디쯤이다 식으로 라인만...
-
이과 누백 1퍼 0
수능 몇틀 정도인가요 아니면 국수탐탐 각각 백분위로 몇 정도
-
일어나라. 주변이 어두워 앞이 안 보이는 것 같아도, 5
아직 밤이 아니다.
-
20등 초반대 점수 궁금해요 (진학사로 다른 대학 점공 봐서 못 봤어요)
-
왜 언매러들이 화작러들보다 10퍼 이상씩은 높은거임 언매는 아무나 하는게 아니다 이건가
-
공부는 안하고 쓸 데 없이 빡갤 오르비 뒤져보며 강사 이름 하나하나 쳐보고 있네...
-
눈팅만 할때는 딥피드만 봤는데 이젠 모아보기가 제알 재밌네
-
손절한얘한테 거으ㅔ 3년 만에 저렇게 왔는데 답장 보내려다가 걍 씹고… 친구없는이유가잇으면ㄱㅊ ㅜ
-
♡♡♡ 4
-
반가워요 2
저는 시험(수능아님)공부중입니다...ㅠ
-
잘자요 10
대답안해주면 얼굴 무브링 넝당 ㅎ
-
이틀차 ㅇㅈ 25
응디에 생긴 빠따와 회초리 자국
-
애니추천해주세요 5
자려고 햇는데 생각해보니까 오늘 카페인 570mg를 섭취해서 걍 이상한 애니말고...
-
이녀석 언제 눈치깜?
-
잘자 2
바이바이
-
게임동아리 1
가면 롤하나요?
-
수린이 왜 반갑지 10
다른 이상한 빌런들 겪다보니 좀 취향이 특이해서 그렇지 애는 착해보임
-
자기야 ㅎㅎ 2
나랑 같이 자장
-
아진짜너무좋리가 4
자ㄹ게요 잘자여
-
몇 점 정돈가요??
-
오히려 이렇게 당시 6평 22번 킬러문항 아니다했었음
-
10일이면 낫는다 했는데 이제 7일지남.. 문제는 멍이 안없어짐 ㅅㅂ 얼음찜질과...
-
응원 0
응원
-
실검이 이상한데 0
유빈이 1위네 뭐 올라왔나
-
살이 찌진 랂았는데 운동을 너무 안 해서 허약체질 됨 학교 등교만 해도 숨이 차서...
-
비상비상 4
새르비에 그가 나타났다
-
한양대 의대를 가고싶으면 꼭 과탐 2과목을 선택해야하나요? 물1 지1 선택하려고...
-
잠이오질않네요 0
오늘도잠못이루는이밤
-
오늘 3일만에 머리감으니까 10 가닥 좀 넘게 빠지던데 평소에는 5 6가닥정도 원래...
-
고도를 기다리며 0
정신병 걸리기 좋은 책 goat
-
눈감으면잘수있나 1
일단 도전
-
오늘 일어나면 0
김치 짜구리 먹어야징 먼가 맛있어보임
-
라고 물었을때 답은 No이다 하지만 이 No는 십덕이 아니니 안심하라가 아니라...
-
솔직히 탈모까지는 아닌데 머리 한 번 손으로 빗을때마다 머리카락이 우수수 떨어짐ㅆㅂ...
-
ㅇㄱㅈㅉㅇㅇ?
-
없었으면 진작 자살했을 듯 고맙다
-
@study_17h 17시간 한 적 한 번도ㅠ없음 하루에 7시간 하는 나라도 괜찮다면…
-
사실 아직도 안 읽어봤었음
-
작수 79점 3 지금 김기철 노베 커리 타는중
-
초면인 내용이 너무 많다…
-
첫사랑 썰 8
첫 연애에 여자랑 본 첫 영화도 그 누나였는데 영화가 알라딘이였음 어 홀 뉴월드...
코시수열은 교육과정 아득히 바깥..ㅠ
이 수열은 굳이 따지자면 코시수열이긴 하지만, 왜 그 말씀을 하시는건지요?..
엡델 안쓰고 교과과정 내에서 어떻게 답을 구할 수 있을지 잘 모르겠네요. 풀이 보여주실 수 있으신가요?.?
그냥 대입해서 계산하다보면 x4, x5의 절대값이 1/4보다 작습니다. f(x)=x^2+x/2라고 할 때, x2n, x(2n+1)의 절대값이 a보다 작고 a가 1/2보다 작으면 x(2n+2), x(2n+3)의 절대값이 f(a)보다 작음을 절대부등식을 통해 할 수 있습니다. n이 1씩 커질수록 절대값 제한에 f가 덧붙여지고, 이때 링크의 제 풀이에서는 f가 덧붙여지는것을수열로 표현했는데, 여기에 f가 붙을수록 0에 수렴함을(말로 표현하려니 이렇게 밖에 안되네요..) 증명할 수 있습니다.(이는 등비수열에서 공비가 1보다 작으면 0으로 수렴함, 샌드위치 정리에 의해 증명되지요.) 절대값 제한이 0에 수렴하니까 결국 샌드위치 정리에 의해 xn자체도 0에 수렴하게 되지요. 링크의 풀이에는 제가 엡델을 썻는데 그냥 제가 입델을 좋아해서 쓴 것이고, 굳이 쓸 필요는 없다고 생각합니다만...
샌드위치가 먹힐 줄 몰랐네요. 감사합니다