[박수칠] 함수의 극대·극소와 미분계수
안녕하세요~ 박수칠입니다 ^^
지난 번에 올렸던 ’극대·극소의 새로운 정의 이해하기’에
많은 관심을 보여주셔서 감사합니다.
1, 2월에 올린 칼럼 가운데 가장 최근 것임에도 불구하고
조회수와 좋아요가 가장 많이 나왔어요.
(오르비 페북에 링크됐던데 그 덕분일 수도 있겠네요.)
그런데…
칼럼을 읽은 분들의 반응을 보니
살짝 우려되는 부분이 생겼습니다.
칼럼을 쓴 의도는 ‘극대·극소의 새로운 정의를
다양한 함수에 적용해서 깊이 있게 이해해보자’였는데
생각과 다르게 새로운 정의가 어렵다는 반응이 많네요.
이것은 극대·극소의 새로운 정의(이하 확장 정의)가
다양한 함수에 적용 가능하기 때문에 생긴 착시라 봅니다.
미적분1, 2 교과서나 수능/모평 기출을 보면
극대·극소 문제는 연속이면서 함숫값이 일정한 구간이 없는
함수를 대상으로 하고 있습니다.
이 경우로 한정해서 확장 정의를 적용하면
주변보다 높은 봉우리는 극대점, 주변보다 낮은 골짜기는 극소점
이라는 해석이 가능하지요.
알고 보면 쉽습니다 ^^
극대·극소 확장 정의는
다양한 함수에 적용 가능하다는 것 외에
또 하나의 장점이 있습니다.
바로 함수의 극대·극소와 미분계수 사이의 관계를
수식적으로 쉽게 연결시켜준다는 점이죠.
바로 확인 들어가야죠? ^^
미분가능한 함수 y=f(x)가
x=a에서 극대라고 가정합시다.
그럼 극대·극소의 확장 정의에 의해
어떤 열린 구간 I에 속하는 모든 x에 대하여
f(a) ≥ f(x)가 성립합니다. (단, a ∈ I)
따라서 f(x)-f(a) ≤ 0가 되고,
x=a에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→a-일 때 x-a < 0, x→a+일 때 x-a >0)
함수 y=f(x)가 x=a에서 미분가능하므로 f’(a)가 존재하고,
위 부등식으로부터 f’(a)=0임을 알 수 있습니다.
미분가능한 함수 y=f(x)가 x=a에서 극대일 때
f’(a)=0이라는 사실이 쉽게 증명되죠?
미분가능한 함수 y=f(x)가 x=a에서 극소일 때
f’(a)=0인 것도 같은 방법으로 증명할 수 있습니다.
그리고 다음과 같은 명제를 만들 수 있습니다.
위 명제는 미분가능한 함수 y=f(x)가
함숫값이 일정한 구간을 가질 때도 적용됩니다.
함수 y=f(x)가 닫힌 구간 [c, d]에서 함숫값이 일정할 때
열린 구간 (c, d)에서는 극대인 동시에 극소,
x=c, d에서는 극대 또는 극소라는 사실 아시죠?
함수 y=f(x)가 구간 (a, b)에서 미분가능하다면
닫힌 구간 [c, d]에서 f’(x)=0이기 때문에
위 명제가 성립함을 알 수 있습니다.
그리고 함수의 극대·극소와 미분계수의 관계에서
주의할 점이 두 가지 있는데…
첫 번째는
’함수 f(x)가 x=a에서 미분가능할 때
x=a에서 극대 또는 극소면 f’(a)=0이다’ 는 참이지만
그 역인 ’f’(a)=0이면 함수 f(x)는 x=a에서 극대 또는 극소다’는
거짓이라는 점입니다.
미분계수가 0이지만 극점이 아닌 경우가 있기 때문이죠.
두 번째는
함수의 극대·극소와 미분계수를 연결하다 보면
미분불가능한 점에서 극대·극소가 나타나지 않는다고
착각하기 쉽다는 점입니다.
하지만 아래와 같이
미분불가능하지만 극대 또는 극소인 경우가 있기 때문에
주의해야 합니다.
마지막으로 한 가지 더!
함수의 최대·최소는 극대·극소와 정의가 비슷합니다.
단지 ‘어떤 열린 구간 I’ 대신 ‘정의역’이 자리할 뿐이죠.
그리고
‘미분가능한 함수 y=f(x)가
x=a에서 극값을 가질 때 f’(a)=0이다’를
증명하는 과정에서 극대·극소를 최대·최소로 바꾸면
롤의 정리에 대한 증명이 됩니다.
볼까요?
i) f(x)가 상수함수일 때
f’(x)=0이므로 c의 값은 열린 구간 (a, b)에 속하는 모든 실수입니다.
ii) f(x)가 상수함수가 아닐 때
함수 f(x)가 닫힌 구간 [a, b]에서 연속이므로
최대·최소 정리에 의해 이 구간에서 최댓값 또는 최솟값을 갖습니다.
① 함수 y=f(x)가 x=c (a < c < b)에서 최대일 때
최대·최소의 정의에 의해
정의역에 속하는 모든 x에 대하여
부등식 f(a) ≥ f(x)가 성립합니다.
따라서 f(x)-f(a) ≤ 0가 되고,
x=c에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→c-일 때 x-c < 0, x→c+일 때 x-c >0)
함수 y=f(x)가 x=c에서 미분가능하므로 f’(c)가 존재하고,
위 부등식으로부터 f’(c)=0임을 알 수 있습니다.
② 함수 y=f(x)가 x=c에서 최소일 때
(같은 방법이므로 생략)
오늘은 여기까지 입니다.
긴 글 읽어주셔서 감사드려요~ ^^
[알림] 미적분1-다항함수의 미분법 부교재 업로드 되었습니다.
다음에 작업할 부교재는 미적분2-미분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[박수칠] 기하와 벡터 - 평행사변형을 이용한 벡터의 합 학습 자료 11
안녕하세요~ 박수칠입니다^^기하와 벡터 원고를 열심히 쓰는 중에 가끔씩 학습 자료를...
-
[박수칠] 기하와 벡터 - 벡터의 일차결합 학습 자료 19
안녕하세요~박수칠입니다^^1월보다더추운2월에건강하게잘지내고계신가요?얼마전부터박수칠수학...
-
[박수칠] 2017학년도 수능/모평 가형 기벡 문제 10선 6
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^설 연휴가 지나가고, 벌써 2월이...
-
[박수칠] 2017학년도 수능/모평 나형 미적분1 문제 10선 5
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^전에 올렸던 2017학년도 수능,...
-
[박수칠] 2017학년도 수능/모평 가형 미적분2 문제 10선 15
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^얼마 전에 박수칠 수학-확률과 통계...
-
[홍보] 박수칠 수학-확률과 통계편이 나왔습니다. 25
의 저자 박수칠입니다. 오르비에 몇 달만에 글을 쓰네요 ^^ 오르비에서의...
-
[박수칠] 2017학년도 수능 9월 모평 나형 21번 풀이 10
9월 평가원 모의고사 어떠셨나요?저는 나형에서 21, 29, 30번만...
-
[박수칠] 2017학년도 수능 6평 수학 나형 30번 풀이 61
6평 나형을 이제야 풀어봤는데 오르비에 30번 해설이 없네요? 여기저기 해설 강의...
-
[박수칠] 2017학년도 수능 6평 수학 가형 30번 풀이 15
6평 잘 보셨나요? 생각보다 잘 봐서 만족스러운 분들도 있을 것이고, 그 동안...
-
[박수칠] 놓치기 쉬운 개념/유형 3가지 (3편) 35
6월 평가원 모의고사가 얼마 남지 않았습니다. 준비는 잘 하고 계신가요? ^^...
-
[박수칠] 귀납적으로 정의된 수열 문제에 대한 평가원, EBS 문의 결과 20
얼마 전에 귀납적으로 정의된 수열 문제에 대한 포스팅 (...
-
[박수칠] 귀납적으로 정의된 수열 문제… 수능에 어떻게 나올까? 36
저도 참 궁금합니다. 교과부 고시와 교과서를 바탕으로 학생들에게 ’귀납적으로 정의된...
-
때는 어제, 매우 즐거움에 목말라 보이는 박수칠 님께드라마(?) 비스무리한 것을...
-
안녕하세요? 좋은 글들이 참 많아서 도움이 많이 됩니다 1
여기에 글을 남겨도 될 지 모르겠네요자료들이 좋아서 출력해서 보고싶어 해보려고...
-
[박수칠] 확통 교재에 대한 의견을 듣고 싶습니다. 24
안녕하십니까! 박수칠입니다 ^^3월말부터 박수칠 수학-확률과 통계 집필을...
-
박수칠 선생님 3
문과 관련 책도 출판하시나요?
-
[박수칠] 증가상태, 감소상태라는 개념은 이제 버리세요~ 39
증가상태, 감소상태는 점에서 함수의 증가, 감소를 나타내는 개념이며, 대체로 다음과...
-
[박수칠] 놓치기 쉬운 개념/유형 3가지 (2편) 18
칼럼으로 들어가기 전에 자랑부터! 드디어 박수칠 수학 미적분1, 2 부교재 작업을...
-
[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유 21
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던 조관 선생님의 포스팅 (...
-
[박수칠] 함수 f(x)g(x), f(x)/g(x)의 그래프 개형 (미적분2) 20
미적분2에서 미분법의 활용 단원의 문제들은 대부분 함수의 그래프와 연결됩니다. 특정...
-
[박수칠] 다항함수의 그래프와 직선이 만나는 모양 15
미적분1에서 배우는 미분법은 다항함수를 대상으로 하고 있습니다. 그 중에서도...
-
[박수칠] 곡선 밖의 점에서 그은 접선 문제 (feat. 변곡접선) 47
이 문제 아시죠? 기출 문제를 공부하다 보면 반드시 넘어야 할 산, 2014학년도...
-
수학 공부를 하다 보면 다양한 개념과 유형을 자신의 수준에 맞춰 이해하고, 나름의...
-
[박수칠] 표본분산을 계산할 때 n-1로 나누는 이유는? 42
2016학년도 수능에 적용되었던 2007 개정 교육과정에서 2017학년도 수능에...
-
안녕하세요~ 박수칠입니다 ^^ 지난 번에 올렸던 ’극대·극소의 새로운 정의...
-
처음에 정보가 부족해서 구매를 망설였지만!저같은 분들위해서 짧게나마 사진과 리뷰를...
-
2016학년도 수능에 적용되었던 2007 개정 교육과정에서 2017학년도 수능에...
-
[박수칠] 함수 y=f(x)와 역함수 y=g(x)의 교점 위치 111
오늘은 정말 오랜만에 수학 영역의 직접 출제 범위로 들어온 ‘역함수’ 얘길 해볼까...
-
[박수칠] 순열/조합 단원과 확률 단원에서 ‘경우의 수’ 세기 37
오르비언 여러분~ 새해 복 많이 받으세요! 다들 설 연휴는 무사히(?) 보내셨는지...
-
[박수칠] 상용로그의 지표와 가수, 수능에 나올까? 안나올까? 52
최근 오르비 수학 게시물을 보면 자주 올라오는 질문이 하나 있습니다. “개정수학에...
-
이번에 다룰 주제는카르다노의 공식(삼차방정식의 해법), 비네의 공식(피보나치 수열의...
-
미적분1에서 미분계수의 정의를 배우고, 간단한 예제를 풀고 나면다음과 같이...
-
[박수칠] 도형에 대한 삼각함수 극한 문제... 2017 수능에서는? 41
다들 알고 계시다시피 2017 수능에 처음으로 적용되는 2009 개정 교육과정에서는...
-
[박수칠] 우미분계수, 좌미분계수는 도함수의 우극한, 좌극한과 같은가? 45
오르비 수학 태그에 매년 보이는 주제인데 올해도 어김없이 등장했네요. 박수칠...
-
요새 놀 시간이 없음으로 음슴체 좀 쓰겠음 일단 본인 소개부터~ 본인은 박수칠...
-
[박수칠] 박수칠 수학에 대한 의견을 듣고 싶습니다. 10
안녕하십니까? ‘박수칠 수학’ 저자 박상칠이라고 합니다. ’박수칠 수학? 그런 책이...
-
[박수칠] 2015학년도 10월 학력평가 B형 21번, 30번 풀이 8
2015학년도 10월 학력평가 B형 21번, 30번 풀이입니다.먼저 21번정적분으로...
-
[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설 8
지난 5월 4일에 포카칩님이 배포했던2016학년도 포카칩 모의평가 예비시행에 대한...
-
[박수칠] 수능특강(미통기 미분법)+기출문제 자료 13
2016학년도 수능 대비용 수능특강의미적분과 통계 기본 3강~5강 미분법에 대한...
-
[박수칠] 수학 B형 변별력 문제 풀려면 기본 개념/유형부터 다지세요~ 3
수학이 A형, B형으로 바뀐 2014학년도 수능부터 30번의 지수함수, 로그함수...
-
2016학년도 수능 대비용 수능특강의기하와 벡터 4강~6강 이차곡선에 대한 문제들을...
-
박수칠 수학 부교재 24
박수칠 수학 부교재 페이지가 다음과 같이...
-
[박수칠] 수능특강(수2 7강, 적통 2강)+기출문제 자료 2
2016학년도 수능 대비용 수능특강에 수록된 문제 가운데LEVEL 3의 문제들을...
-
[박수칠] 2015학년도 9월 모의평가 B형 시험지 풀이 스캔본 1
올해 두 번째이자, 수능 전 마지막 평가원 모의고사 잘들 보셨나요? 저도 시간...
-
[박수칠] 2015학년도 6월 모평 B형 28번, 30번 해설 24
오늘 6월 모평 잘 보셨나요?작년 6월 모평과 비슷한 수준인 것 같은데,포물선의...
-
수학영역 A형에 비해 B형에서는 다양한 미분법/적분법을 배우게 됩니다. 그 중에...
-
6월 모평이 4주 앞으로 다가왔습니다. ‘평가원 주관’, ‘현역부터 n수생까지...
-
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을...
-
[박수칠] 맞췄든, 틀렸든 이유를 제대로 모르면 정리는 필수입니다. 22
성적 향상을 원한다면 경계해야 할 것이 몇 가지 있습니다. 그 중에는 ‘자기 실력에...
-
[박수칠 수학-미적분과 통계 기본]이 4월에 나옵니다. 4
아~주 소수의 학생들만 애용하고 있는 박수칠 수학의 저자입니다. ^^ 작년 12월에...
함숫값이 일정한 구간이 있는 함수에서도 극대극소가 적용되나요? 왜죠?
구간내에서 해당 값보다 큰값만 없으면 극대이므로 상수함수는 모든값이 극대 모든값이 극소입니다.
지난 칼럼에 자세하게 설명되어 있습니다.
http://orbi.kr/0007982857
칼럼 매번 잘 읽고갑니다!
늘 와주셔서 감사합니다 ^^
쵝오.
오늘은 일찍 오셨군요 ^^
감사합니다~
먼저 좋아요 누르고 읽으러 갑니다
와주셔서 감사합니다~ ^^
좋은글 감사합니다~
읽어주셔서 감사합니다 ^^
학생한테 과외하면서 쉽게 가르친다고 극점은 도함수 부호가 바뀌는 지점이라고 설명하는데 이러면 곤란할까요...? 이런
못하는 학생 대상이에요
본문에도 언급되어 있지만
교과서/수능으로 한정했을 때 극대, 극소 문제의 대상은
함숫값이 일정한 구간이 존재하지 않는 연속함수입니다.
이런 경우에는
(극점)=(도함수의 부호가 바뀌는 지점)이라고 할 수 있죠.
별 문제 없어 보입니다 ^^
아 감사합니다!
좋은 글 감사합니다^^
저도 읽어주셔서 감사드립니다 ^^
박수칠때떠나라
박수 받으려면 아직 멀었다니까요... ㅡㅡ;