[간단칼럼] 음란함수 보내버리기❤️
보기만 해도 꼴리는 음란함수가 있네요❤️❤️
음함수에서는 식 몇개만 세워주면 되요
그러면 알아서 바로 open!!!
보내버리기 쉽답니다❤️❤️
접점을 g(t)로 한번 둬보자고요
왜냐면 접점도 t값에 따라 달라지는 변수거든요❤️❤️
또이러면 덜 햇갈린답니다
그러면 이렇게 되네요
이 식 하나로 정답까지 가버렷!❤️❤️
근데... 우리 g(t)랑 t만 한번 교미시켜볼까요? f(t)빼두고요
식 2개로 분리시켜 봤어요
일단 f(a)가 -e^3/2니까 이때 g(a)는 -3/2네요❤️
그때 e^t값은 1/2e^3/2이군요
우리는 f'(a)의 값을 구해야 해요
그럼 g'(a)값을 구해야 하겠네요
g'(a)값은 저 왼쪽 식 미분해버리면 될 거 같지 않나요?
그럼 t에 대해 메챠쿠챠 미분해버립시다
한번 해볼께요
나왔다.!!!!헤응❤️❤️❤️
바로 답까지 가버렸네요
이렇듯 음함수문제에서 포인트는!!!
뭘 변수로 놓을지가 가장 중요해요
그럴땐 문제를 스캔하고 이문제에서는 f(t)였으니
변수를 t에따라 값이 달라지는 함수로 두어도
무방해요. 사실 이게 g'(t)로 표현하냐, dk/dt꼴로 표현하냐
딱 이 차이 밖에 없거든요
또한 음함수 문제는 딱 식 2개만 있으면 풀 수 있어요
정해야 하는 f(t)값이 어떻게 도출되는지에 대한 식
그리고 t값과 변수로 처리한 값이 어떻게 연동되는지에
대한 식. 이 2개만 있으면 바로 미분해버리면
f'(t)값 설정식, dk/dt아니면 이문제처럼 g'(t)의값이
알아서 분수쇼하기 때문에
자동적으로 답이 분출 되버리는거에요❤️
술 너무 마셔서 머리 아픈관계로
오늘 칼럼은 여기까지 。◕‿◕。
다음에 뵈요❤️
도움이됐다면 모두 좋아요 눌러주세요❤️
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
먹어볼까 콩나물도 좀 넣어보고
-
사2 vs 과2 6
현역 사문1 지구3 성균관대 입학예정이고 반수예정입니다 반수시 연고공~의치한까지...
-
안성탕면이랑 진순먹는 애들은 강제로 신라면 입에 쑤셔넣어야함
-
벌써 졸업이구나 4
왤케빠름
-
강민철과 함께라면
-
오르비언들 안녕~
-
허니버터칩 ㄹㅇ GOATㅋㅋ
-
이미지적어드림! 41
자고로 이미지는 솔직하게 적는게 근본이니까 상처받을거같으면 하지마
-
왜냐하면 강민철이 있거든
-
맛들리면 괜찮긴 함 막 욕먹을 맛은 아녀 진짜는 삼양라면임<<<이새낀 걍 맛이 없음
-
1. 사리곰탕 2. 육개장 소컵 3.부엉이바위서 먹는 두부김치라면 ㅇㅇ 이게 정배임 역배걸지마라
-
0교육이라 뭘 곱해도 0임 옯하하하하
-
돈벌고싶어서 주식해써...
-
진순이가 맞다니까~ 10
절대 신라면도 매워서 못먹는게 아님. 아니야
-
우리 맛있는 라면 많이 사랑해줘요
-
저기.. 8
옯스타는 없지만 맞팔 해줄 오르비언 있냐?
-
낙지야 이게 5x번 까지 도는 점공이라고?ㅋㅋㅋㅋㅋㅋ 3떨각인가
-
1+1은 2입니다
-
현역이고 생지 이과에서 아예 사탐으로 문과 정시 지원 하려고 하는데 생윤 사문 고정...
-
이미지 써드림 19
선착 5명만.. 힘들고 피곤하고 병듦
-
상당해
-
야 기분좋다 0
부엉이 바위쪽으로 가자
-
오늘부터 라이브 듣기 시작하는데 교재들은 어떻게 사용하는 건가요? 그리고 이미...
-
안녕! 3
후후
-
내가행복하게해주고픈사람을 행복하게해주고십어
-
네~
-
ㄷㄷ
-
오티 준비 3
서바 빨리 풀기 하는거 맞죠?
-
선착 20명 이미지 48
자주본사람이면써드림.
-
행복해지고십어 2
언젠가는날행복하게해줄사람을만날수있을까
-
시험범위를 늘려서 지금처럼 어떤단원에 n제를 볼 필요도 없게 문제의 난도를 교과서...
-
ㅠ
-
전문 다 읽고나니까 멍 했었음 나무 아래에서 눈 맞으며 서 있는 안씨 ..
-
강기원T 스2 현강을 드랍하긴 아깝고 근데 스블 인강 진도율 보면 허들링도 늦어질까봐... 어쩌죠
-
컵라면은 육개장 작은컵, 백종원 고기짬뽕 봉지는 진순이 너순이 반박시 그냥 주거
-
안성탕면 이 새끼는 끓여 먹어도 맛있고 부숴서 생라면으로 먹어도 맛있음
-
범위는 1월부터 9월이고 기회는 무제한입니다 ㅋㅋ 25분까지만 ㄱ
-
아배고파
-
인문 반2개라는데 인원 얼마나 되는지 아시는 분 계신가요?
-
과거의 나는 무슨 생각으로 이런걸 그린걸까
-
맞팔구
-
난 왜 남자일까 6
슬퍼
-
사교육이 없어지는 걸 원치 않아 할 듯 그러면 자기 존재 이유가 없어질 테니…
-
맞팔9 1
-
남친5명생성완뇨 4
흐흐
-
지인선 설맞이 문해전 샤인미가 고트라는데 이렇게 갈까여? 아님 다른 구성으로...
-
ㅇ 0
ㅇ
-
[자작시] 이상 4
어쩌면, 또 어쩌면 지는 해를 바라보며 멈추라 절규하는 주름 그득한 노인과 같은...
-
우우웅.. 0
웅
뵈요 X
봬요 O
저 화작이라 잘 몰라요
너는 저격 한번 더 먹어라
완벽하게 돌아버린거냐
프사보고 오해했네 핰ㅋㅋ
물개님이 저러는줄 알고 자꾸 놀라잖아요
스읍
...
하트 ㅋㅋㅋㅋㅋㅋ
f(t)도 t랑 하고 싶데
같이 미분하는 사이라 괜찮데요~
진짜 애매하다 이건 뻘글인가 칼럼인가
두번미분해서변곡점찾아서자극하기
변곡자극하면 바로 가버려욧❤️❤️❤️
님.
이게무슨
내가 뭘 본거지
오늘 폼 괜찮게뽑히네
나 이런류의 칼럼 너무좋아
이거 왜 좋아요 ㅈㄴ달림
도플갱어인지 쌍둥이의 솔직한 평가 좋잖아
ㅆㅂㅋㅋㅋㅋㅋㅋㅋ
헐크처럼 두뇌세계관 통합한거냐
미친
잡담달아
칼럼이라 안달았어요
아이고야
격추.
씨발
Hell no
워..
ㅋㅋ
아이고...
미분이
혹시 미친 분수의 줄임말인가요?
이건 칼럼일까 뻘글일까
g'(t)의 값이 알아서 분수쇼 <<<<<< 개꼴리네...
ㅅㅂㅋㅋ진짜
님아....
아..