생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아직 메디컬은 레전드긴하네
-
장영진t는 다 좋은데 강의 텐션이 많이 떨어지고 올해 컨텐츠가 좀 부족한 느낌?...
-
도형못해서 기하 못함 케이스분류못해서 확통 못함 강 제 미 적
-
반짝이는 가로등 보고 내가 우와아 왤케 예뻐 이거 봐 예쁘지 이러면 응.. 사진...
-
기하못하고 미적못하는 통통이가..
-
국어 인강 질문 0
대성이랑 이투스 있는데 올오카 독서랑 훈련도감 이렇게 듣는게 나을까요? 아니면...
-
내일 잇올 상담받으러 가는데 떨리네용
-
아니근데 만19세가 15
영화랑 술 담배는 1월1일부터 뚫리는데 왜 주식만안됨
-
수국김 김덩욱 고전시가 반응스위치온 일취클 체크메이트 문학 독서 이렇게 들을건데...
-
ㅇㅇ?
-
스스로 논란거리가 되시길 자처하시는 겁니까 하루에 하나씩 저격글이 올라오네
-
1시간동안 열심히 만든 문학 문제는 아무도 안보는데 0
어찌하여 뻘글들은 오늘도 26을 하는가…
-
월요일 좋아 0
다들 출근하고 나 집에 혼자거든
-
손발이덜덜
-
미적 계산량에 깔려죽게 생겼다
-
완전대칭인 최고차항 계수 1인 사차함수 극값 두개 알고, 3
극대를 갖는 x값 하나 알 때 1:루트2 비율관계 쓰는거 말고 좀 더 깔쌈하게 식...
-
은행상품에 가입해야겠다
-
현실에선 인가경도 상위권이다라고 말씀하시는 분들이 계십니다단순 수치상으로는 정시...
-
정약용 ㅅㅂ 1
진짜 너무 오지랖퍼아님?
-
전화추합이 4
2월 극말이나 3월에 오는 경우도 있나요??
-
주식같은걸 하면 쓰나 만18 세는 계좌도 못만드네
-
작수 2등급따리가 버텨낼수 있을지 살짝 쫄리는 부분 지금 6주차까지는 버겁진않음
-
PCR 2회차긴한데 개맛잇게풀었음 그냥거의고추슥슥비비면서풂
-
수학은 실전개념 강의가 되게 많은데(뉴런 알텍 프메 스블 등) 과탐 실전개념은 왜...
-
예 예 예
-
주식해보려했는데 9
이런 ㅆ 만18세라서 안되네
-
거의 못 붙나요?? 아는사람없음?
-
누구 하는 사람 있긴 함?? 지방 일반고다니는 내 사촌동생 하긴 한다더라 ㅋㅋ
-
맞팔구합니다 10
잡담태그 잘달고 뻘글 많이씁니다
-
한건희랑 하재호가 goat
-
어떻게 친구들보다 막차가 1시간이나 빠르냐? 시발
-
너구나?
-
그런건없다
-
오늘 정말재밌었습니다
-
이화여대 합격생을 위한 노크선배 꿀팁 [이화여대25][필수 활동 4가지] 0
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
거의 1년 뒷북이긴 한데 재밋다
-
눈에 ㅈㄴ 튄다
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
김승리에서 시작해서 정석민으로 끝남
-
여캐 일러 투척 7
-
정법하고싶어정법하고싶어정법하고싶어
-
캬루룽 그림 그렸다 13
채색은 도저히 못해먹겠다
-
10시임 7시간 채우려면 1시까지해야댐 ㅠ
-
미3누 나올때만 해도 몇십년간 사람 되게 좋지 않았나 뭔 계기로 정치병 걸린거? 진짜모름
-
롤할사람 0
롤체할사람
-
미칠거같애
투과목 칼럼은 개추