킬러 3문제 먹방
-음.. 시작부터 개같은 게 나왔구만!
-먼저 주어진 함수 f(x)의 개형을 그려보자. 저걸 직접 적분하는 건 미친 짓이니까 개형으로 추론을 해보자는 거지. 이때 y<0의 두 구간의 넓이를 각각 A라고 두자. 우함수니까 넓이는 서로 같아.
-g(x)가 f(x)의 적분에 대한 식으로 나타나있네. 먼저 a가 왼쪽으로 멀리 떨어져있을 때를 보자. g(x)의 그래프가 x축과 만나는 점이 2개가 돼야 하는데 그렇지 않지? Pass.
-특정 구간의 넓이가 저 그림처럼 2A일 때의 a를 보자. 이땐 조건에 부합하네. 그러면 이때의 a가 바로 α1임을 알 수 있어. Check!
-또한 a가 α1일 때 극소를 갖는 곳이 x=1이라고 했으니 p=1. 따라서 c=ln2.
-a=-1일 때를 보자. α1<a<-1 일 땐 어차피 안 돼. 그러면 교점이 3개가 되거든. 이건 자기 머릿속으로 상상해서 그려보도록 하고. 아무튼 a=-1이라면 조건에 맞게 g(x)가 그려짐을 알 수 있어. 즉 이때의 a가 바로 α2!
-a=0이라면 교점이 3개가 되므로 안 돼!
-a=1이면 교점이 2개가 되는군! 이때의 a는 α3야!
-a가 우측 상단 그림과 같이 특정 구간의 넓이가 2A가 되는 곳에 있다면 g(x)는 역시 조건에 맞게 그려지지. 이때 a는 α4.
-a를 오른쪽으로 더 멀리 잡아보면 여기서부터 g(x) 그래프가 조건에 맞지 않게 그려짐을 알 수 있어.
-그러면 결국 조건을 만족하는 a의 개수는 m=4야.
-(나) 조건을 보자. (나)는 a=α1일 때 만족한다는 것에 주의해! 그림처럼 f(x)는 우함수고 넓이 표시도 저렇게 y축 대칭을 이루므로 α1=-α4이고, 각 부분의 넓이를 A에 대해 표현했으니 이걸 가지고 분석해보면....
-드디어 알아냈다. 저 g(x)에 관한 적분은 부분적분을 활용해야 했어. g(α4), g(-α4)는 g(x)의 개형을 참고하면 바로 나와. 각각 2A, 0이지. 그리고 g(x)가 f(x)에 관한 적분이므로 g'(x)=f(x)고, xf(x)=xln(x4+1)-xln2는 기함수라는 걸 알아야 해.
-이것이 문제 정답 여부를 결정한다. 기함수를 -a, a까지 적분한 값은 0이란 거 알지? 이걸 이용하면 결과가 간단히 나온다. 즉, k=2.
-최종 답은 16.
-먼저 (나)의 식은 모든 실수 x에 대해 성립한다고 했으니 x=0, -a를 집어넣어보자. 왜 하필 0, -a냐면, f(x)가 우함수이고, 우함수는 y축 대칭이므로 0부터 a까지 적분한 값과 -a부터 0까지 적분한 값은 서로 같을 것 아냐? 그걸 이용하고자, 0, -a를 집어넣은 거지.
-a를 구해보자. a의 범위가 문제에 주어져 있으므로 이것까지 고려하면 a의 값이 나오게 된다.
-자, 이제 (나)의 식을 미분하고, 한 번 더 미분해보자. 이제 주어진 닫힌 구간 [0, a/2]에서의 함수 f(x)를 활용해볼 거야.
-(나)를 한 번만 미분한 식을 활용해보자. f(x)가 우함수임을 응용하기 위하여 두 번째 식에 있는 x+5π/3이 -x와 같아지도록 하는 x의 값 -5π/6을 두 번째 식에 대입해볼 거야. 근데 쓸모없는 시도였네. f(x)=f(-x)니까...
-그러면 (나)를 두 번 미분한 식을 사용하자. 똑같이 x=-5π/6을 대입하면 f'(x)=-f'(-x)이므로 f'(5π/6)을 얻을 수 있고, 5π/6은 주어진 닫힌 구간 내에 있으니 이 구간 내의 함수의 도함수의 식에 대입해서 정리하면 b, c에 관한 식을 얻을 수가 있지!
-다음으로 (나)의 식에 x=-a/2를 대입해보자. 그리고 닫힌 구간 [0, a/2]에서의 함수를 0부터 a/2까지 적분해보자. 그 둘을 우함수의 성질을 생각해서 비교해보자. 그러면 b, c에 관한 또 다른 식이 나오게 된다.
-그럼 b, c의 값들을 구할 수 있어!
-최종 답은 83!!!
-먼저 단순하게 구할 수 있는 것부터 구해. g(1)의 값을 통해 f(1)을 찾아내고, f(x)가 x=a에서 극대라고 하니 f'(a)=0임을 인지하고.
-자! 그 다음은 "뭐 어쩌라고"라고 생각하지 말고, 먼저 (나)조건부터 살펴보자. f(a)가 0인지, 아닌지에 따라 경우가 나눠지게 돼. 0이 아니면 그냥 g'(x)에 a를 집어넣으면 되는 반면, f(a)가 0이라면 극한을 통해서 g'(a)를 구해야지. 어차피 g(x)는 실수 전체에서 미분가능하다고 했으니 x=a에서의 g'(x)의 극한값은 결국 g'(a)랑 같잖아.
-먼저 f(a)=0일 때야. 이때 각 식이 극한을 적용했을 때 수렴할 수 있게 되는지 확인만 하면 돼. 먼저 우측 식. 분자는 f'(a)=0이므로 0으로 가고, 분모는 f(a)=0이니 0으로 가지? 0/0꼴이니 OK.
-다음은 좌측 식. 분모에서 f(a)=0이므로 분모에서 sin(πa)=0이어야 하네. a>0이라고 문제에서 주어져 있으니 a는 결국 자연수라는 소리잖아?
-f(a)≠0일 땐 그냥 g'(x)에 x=a를 집어넣으면 돼. 우측 식은 0이란 걸 금방 알 수 있고, 좌측 식에서는 분모에서 f(a)≠0이니 분자에서 sin(πa)=0이어야 하는군. 어라? 이때도 a는 자연수여야 하네.
-a가 자연수라는 것도 알았어. (나) 분석은 잠시 중단하고, (가) 조건을 봐보자. 먼저 g'(0). 만약 f(0)이 0이 아니라면 g'(x)에 x=0을 대입했을 때 나오는 g'(0)=0이 되는데, 이는 (가)와 모순이지? 즉, f(0)=0이야.
-g'(2a). f(2a)가 0이 아니라면 g'(2a)는 0이란 걸 계산을 통해 알 수 있어. 이때 계산 과정에서 a는 자연수이므로 2a는 짝수라는 걸 알아야 해. 그러나 g'(2a)=0은 (가)와 모순되지. 따라서 f(2a)=0.
-f(0)=f(2a)=0이라는 것도 얻었겠다, 이제 다시 (나)를 분석해보자고. (나)에서 f(a)가 0이냐, 아니냐에 따라 경우가 나눠졌었지. 먼저 f(a)=0일 때를 봐볼까. 그러면 g(a)는 x=a에서의 g(x)의 극한값과 같으니(g(x)가 실수 전체의 집합에서 미분가능하므로) 식은 저 중앙의 빨간 식으로 표현돼. f(x)의 식을 저 파란 식으로 표현하고, f'(a)=0임을 이용하면 f(x)를 단 2개의 미지수 p, a로 표현된(x 제외) 식으로 나타낼 수 있어.
-f(x)는 x=a에서 극대라고 하니 p는 양수이지.
-자, 이제 아까 그 극한식을 계산해보자. 이때 t=x-a로 둬서 극한식을 변형해야 해. 그리고 a는 자연수니 sin(πt+πa)=±sin(πt)인데 제곱하면 어차피 +가 되니 상관없어. 그러나 제곱하지 않은 1+cos(πt+πa)는 얘기가 달라져. 일단 저대로 두도록 하자.
-여기서 a가 홀수면 분모가 0이 되는 대참사가 벌어지므로 a는 무조건 짝수여야 해. 그러면 pa2의 값을 구할 수 있어!
-아까 p는 양수고, a는 자연수 중 짝수라고 했잖아. 그럼 pa2>0이라는 소리인데, -64/7라고...? 뭔가 이상하지? 이 결과가 나오는 경우는 f(a)=0일 때였어. 그 말인즉슨, f(a)=0인 경우는?
-f(a)가 0이 아니라는 소리네. f(0)=f(2a)=0, f'(a)=0임을 이용해 f(x)의 식을 p, a, c, d에 대해서 세우고, 중앙에 세운 빨간 극한식도 참고해서 접근해보자. 그러면 c=-2a임을 알 수 있지.
-g(0)의 극한식을 볼 거야. 식을 정리하다 보면 분모에는 x2이 있어야 하므로 d=0인 걸 알 수 있어.
-이제 극한을 풀면 pa2의 값이 나오게 돼.
-c, d, pa2도 구했겠다, f(x)의 식을 p, a에 대해서 변형시키고, f(1)=7을 통해서 a를 구해보자. 이때 a는 자연수임을 기억해야 해. 그러면 a=4가 나오고 p는 pa2의 값에 의해서 1/7로 나와.
-그럼 f(x)의 식을 다 구한 셈이지 뭐. g(-1)을 계산하고 정리하면 최종 답은 95!!!!!!!!!!!
-(나)에서 얻은 g(1)=0을 통해 (가)에 대입해서 g(2)를 구하고, g(2)=0임을 통해 다시 (가)에 대입해서 g(3)를 구하다보면... 결국 g(x)의 x 자리에 정수가 들어가면 함숫값이 0임을 확인할 수 있네.
-자, 여기서부터 굉장히 중요한 과정이 시작된다. 먼저 (나)를 미분한 다음 f(x+1)-f(x)=? 꼴로 고쳐. 그리고 (가)의 양변을 ex로 나눠. 이제 두 식에 있는 공통항 e-xg(x)를 소거하면 f(x+1)-f(x)에 대한 식이 보라색 식으로 표현됨을 알 수 있어.
-g(정수)=0임을 이용해보자. n이 정수라고 둬. 그리고 f(x+1)-f(x)=(뭐시기) 의 양변을 n부터 n+1까지 적분해서 정리해보자. 이때 좌변의 1번째 적분식은 치환적분을, 우변의 2번째 적분식은 부분적분을 적용했어. 그러면 맨 아래의 식처럼 매우 간결(?)하게 나오지?
-이제 n이 정수라고 했으므로 n=0, 1, 2, ...를 대입해가면서 파란색 적분식들의 값을 각각 구해보자. 구하다보면 어떤 규칙이 보이는 걸 인지할 수 있어. -자, 이렇게 나타나게 된다. 그럼 게임 끝났지?
-따라서 최종 답은 26.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
치킨집 수익과 개업에 대해서요
-
삼각함수 다 까먹어서 하나도 못알아먹는중 집중이 안되네
-
그치만 자산으로 커버가 된다면 이츠오케이입니다
-
타자 ㅇㅈ 0
https://typing.works/
-
육각덕 이거 부정확항게 13
내가 성격S임 이건 진짜 내 친구가 보면 웃겨서 숨넘어갈듯
-
@graceful_mom_mingle zzzzzzzzzzzzzz 이게 뭐임
-
반박하면 원딜 cs내가 다 먹어야지
-
마이고 재밌나요 4
걸밴크 재밌게봤어요
-
궁금함뇨 그냥 자기 하기 나름인가
-
원래는 2월중에 주요변화평가 판정결과가 나온 뒤에나 좀 더 상황이 확정되고 나서...
-
. 1
.
-
지방 약대 6
지방 약대 합격했는데 재수해서 인서울 약대로 옮길 가치가 있을까요? 진지하게 알려주세요
-
F ㅅㅂ 3
-
성격은 안숨겨지나버네 ㅇ
-
도넛땡긴다..
-
오늘 개고생했다 1
너무 많은 일이 있었어... 지금 ㅈㄴ 예민하고 세상 모든게 짜증남
-
밤마다 애니보면서 2d여캐에 대한 진지한 토론만 하다보니..
-
뱅드림 아베무지카 13
꼭 보세요
-
육덕테스트 0
성격이 왜 B가나오지
-
다른테스트 가져와라
-
30시간 투자할 가치가 있나
-
벽 느낌. 27,29도 어려움..
-
뭐뭐 그럴 수도 있는거니깐요
-
육덕테스트 좀 이상함 12
연애0회에 번따0회인데 왜 b임?
-
화2는 어떨까 화1만점권친구들은 수학도 고정96-100이라 계산은 다들 ㅈㄴ빠르긴하던데
-
23수능을 마지막으로(공통-8점) 공부를 손놓은상태라서 내년시험을 목표로...
-
공스타 팔로우한새끼중에 좆같은 게시물 올리는새끼있네 6
씨발련이 진짜 앰창인가
-
뭔 서성한이 학력 B랭크냐
-
신선한 공기를 마셔줘야해
-
특정당하려나요
-
대학다니면서도 오르비한다? ㅋㅋ 네
-
육각덕 0
(혀녁이지만....스무살로 퉁쳐주시죠)
-
육각덕 해봄 2
가진 게 성격밖에 없네 ㅠ
-
믿습니다 센세 내가 국어 84점일리가 없어
-
확통 만표>미적 만표인 경우가 최근에 있었나요?
-
기억력이나 이해도나 그런거 좀 부족해서 중간쯤 할 줄 알았는데 의외로 준우승했네
-
화1 놀리면 안됨 10
저긴 고능아 집단 수용소임. 저기 붕괴되면 안에 있던 죄수들 풀려나서 다른과목...
-
확통을 엄청 오랜만에 공부하는데 한완수로 바로 시작해도 괜찮을까요? 개념도 가물가물한 정도입니다..
-
건전한 유저
-
이거 책 매년 따로 나오는거 아닌거 맞나요?? 작년꺼 사서 들어도 될까요??
-
근데 이거 외모 뭔기준이지 연애 0회 번따 0회누르면 F나오는거 아녔나
-
이거 뭐냐
-
ㄹㅇ같은데? 다른 게임은 이정도로 페인짓할 여건이 그때 안됐었음
-
이런
-
와리만해요..
-
육각덕 2
아.
-
가능하다면 수록된 모든 지문을 다뤄볼까합니다 :) 설동안은 잠시 쉬어갔고 (수능특강...
-
아빠 고향에 현수막 걸어야지
-
육각덕 6
수능 누백하고 비슷허네
191029도 풀어주세요
그해 수특과 상당히 비슷하더군요
만화가 2000년대 감성이라 너무 좋네요 ㅋㅋㅋㅋ