[수학] '가비의 리' 이걸 안다고?
안녕하세요
오르비by매시브 수학강사
이대은입니다.
오늘은
수능출제과목에 들어있는 내용은 아니지만
기출문제에 간혹 사용할 수 있는 문제가 있어서
재미삼아 보라고 들고왔습니다.
주제는
가비의 리
입니다.
솔직히
몰라도 됩니다.
당연한 이야기지만
고등교육과정을 넘어가는 풀이가
훨씬 빠르면 출제할 수 없으니까요.
그래서 근사가 사라졌,,
그럼 시작하겠습니다!
시작 전에 좋아요, 팔로우 한 번씩 해주시면 감사하겠습니다.
1. '가비의 리'란?
공식부터 보여드리면
입니다.
자세한 식에 대한 설명은 생략하고
이렇게 뜬금없는 가비의 리가 문제에 어떻게 적용되는지
한 번 봅시다!
2. 사용할 수 있는 당위성은 식의 형태
제가 적는 칼럼의 공통된 말이지만
많은 수학적 도구를 알더라도 결국 사용하지 못하면 아무 의미가 없습니다.
수능에 출제가 될 가능성이
높지 않다고 생각되지만
그래도 배우는 김에 언제 쓰이는 지 알면 좋으니까
설명해보겠습니다.
문제에 어떻게 적용되는 지 예시를 통해 보여드릴게요.
문제를 읽고
어떻게 가비의 리를 적용할 수 있을까
를 생각해보세요!
제가 수업 때 매일 강조하는 말이 있습니다.
수학을 잘하기 위해 필요한 1번은 의심하고 집착하는 태도이다.
가비의 리 식을 자세히 보시면
분수끼리 등호관계가 성립하는 경우입니다.
그리고 예시로 든 문제의 조건을 보시면
식의 형태가 유사한 게 보이시죠?
게다가 왼쪽 두 식의 분자끼리의 합이
가장 오른쪽 식의 분자와 같다는 걸 근거로
왼쪽 두 개의 분모끼리의 합이 3이라는 관계식을 이용하면
최종값이 등장하는 관계식이 생김을 알 수 있습니다.
이후의 풀이과정은 당연히 아시겠죠?
이제 좀 가비의 리를 이용한 풀이가 보이는 학생들은
살짝 더 어려운 아래의 문제에서도
가비의 리 풀이를 떠올릴 수 있을 겁니다!
밑변환공식을 이용하면
왼쪽 세 식의 분모끼리의 합이 맨 오른쪽 분모와 같다는 게 보이시죠?
그럼 당연하게도 답은
2, 5, 10의 곱인 100이 됨을 손 안 대고 풀 수 있습니다!
오늘 글은 여기까지입니다.
지금까지 적었던 글과 다르게
가볍게 읽어주시면 될 글입니다.
세상엔 다양한 풀이가 있고
언제나 더 많이 아는 것은 나쁠 게 없습니다.
다만
하나도 제대로 알지 못하고 다양함만 추구하는 것은 상당히 문제다!
라는 것을 잊지마세요. :D
그럼 다음에 또 다른 흥미로운 글로 돌아올게요!
아래의 링크는
기출분석 방법에 대한 내용을
제가 정리한 글이니
참고하실 분들은 한 번 읽어보세요!
마지막으로
다음에도 도움이 되는 글로 돌아올테니
좋아요, 댓글, 팔로우
ㅎㅐ주시면 정말 감사하겠습니다!
질문이나 문의사항이 있다면
댓글
또는
오픈카톡
또는
이대은T연구실 번호
01080719636 (선 문자 후 통화가능)
으로 연락주세요!
쪽지는 확인이 어렵습니다ㅠㅠ
BEST 수강후기
1. https://orbi.kr/00069304214
2. https://orbi.kr/00070948287
2026 학년도 수능강좌 신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
수학강사 이대은
현) 대치 오르비 by 매시브
*25학년도 수강생 1000% 이상 증가
현) 매시브학원 대치, 경복궁
현) 대치명인학원 중계
전) 사관등용문학원 대치
전) 비상에듀 재수종합반
*2023, 2024, 2025학년도 수강생수 수학 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
https://forms.gle/86uzZHVWGPEAkkCH6
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
섹스 12
아 입구컷이네 너무해….
-
2트 14
몬가 오르는데, 각 잡고 해볼까 ㅋㅋ
-
그렇다
-
일한다도르로 안자다가 이제야시작한 레전드인생ㄹ
-
얼버기 2
-
아직 난 안졸린데ㅜ
-
그래도 높진 않네
-
26 마더텅 독서 문제집 풀고 있는데요 너무 오래된 기출문제까지 풀어야 할까요?...
-
재종다니긴 쫌 그렇겟지 아쉽당
-
고3때 반에서 아는 커여운 애가 오르비 해서 수능끝나고 오르비 가입했었는데 이게 옯만추인거네
-
옯 또 궁금한거 6
글도 안썼고 덕코도 700 이렇고 뱃지센츄 없고 맞팔도없고 댓글에서도 자주 못본...
-
기차지나간당 8
부지런행
-
라이트 훅으로 눕힘
-
https://namu.wiki/w/%EC%B9%B4%EC%98%A4%EC%8A%A4...
-
얇은 사(紗) 하이얀 고깔은 고이 접어서 나빌레라. 파르라니 깎은 머리 박사(薄紗)...
-
이걸로 억울한 일이 안 생기는 일이 있나
-
저기에서만활동하는사람들잇던데
-
해안선이 9
프랙탈 구조를 가지는거 아시나요
-
설정에서 봐도 안보여 핑프같나? 미안ㅜ.ㅜ
-
아 깼다 7
잔지 얼마 됬다고
-
노래 추천 11
https://youtu.be/LKZyp2cSAy4?si=N6KGVcLSTzhzx9W...
-
코골이 진짜심한사람이랑 20
결혼해야되면 할수잇음? 님이 잠귀밝다고했을때 사랑해서 결혼하고싶은사람이 코를 겁나골아 가능?
-
최근에 자주보고 제일많이 연락한순으로 위에있는거야? 맨위에있는게 제일많이 들여다보고...
-
수악 논문만 11
1500개 올린 사람도 잇음
-
이성볼때 말고도 같은성별 연예인이라거나 친구중에 앵간치생겻다 생각하는사람들 보면 다 눈썹털이 많음
-
다들왜안자 13
외않좌
-
잠온다 15
형 자러갈게
-
옯 궁금한거잇음 11
왜 여기서는 정치얘기 잘 안함? 보통 커뮤는 어쩌다한번씩 정치메타열려서 물어뜯고...
-
이건 다들 알려나 13
2보다 큰 짝수는 두 소수의 합으로 표현됨을 증명하여라
-
그때가 여름이었어서 엄마랑 형 내가 거실에서 창문 열고 잘려고 했었음 그런데 밖에서...
-
이사람은또누구임 0
??
-
팔로워가 늘어났어
-
전 문제 답 2
홀수인 완전수는 난제다.잇는지 없는지도 모른다
-
그냥.. 새벽에 조용히 보고 있으나 좋네요.ㅎ 뜬금 없지만 다들 좋은 오늘 되세요..ㅎ
-
생각이깊은분이이상형이에요..
-
사랑할 수 있는 사람이 좋고 사려깊은 사람이 좋아 근데 그런 사람들은 나 안좋아할듯
-
난 듬직한 남자가 좋아 18
그래서 군대에서 찾아볼려구
-
오늘의 문제 6
자신을 제외한 양의 약수의 합이 자기 자신이 되는 수를 완전수라 한다.완전수의...
-
사촌동생 7
3^20의 일의자리를 맞추는 문제가 잇엇음 사촌동생(형)을 과외해주고 잇엇는데 난...
-
57 3
소수
-
ㅇㅇ
-
21 30중엔 꽤 괜찬은게 잇엇음 갈수록 쉬워졋지만..
-
자꾸 뭘 먹음 0
돼지되겟다 피티도 안간지 좀 됐는데ㅜㅜ
-
경영vs경제 0
해주세요
-
눈 많이오네
-
제 이상형은…. 17
이상 형 ㅇ.
-
에라모르겟당 0
화학에선 많이 쓰는데
엇,,, 아쉽게도 전 물지여서,,, 그것도 조선시대에,,,,,ㅎㅎㅎ
앗 누가 먼저 썼네요
꺼삐탄 리는 아는데
공수1에서 꽤 나오기도 합니다 로그꼴에서 쓰는케이스는 첨보네요 ㄷㄷ
고1때는 가비가 사람이름인줄 알았는데 ㅋㅋㅋ
오호,,,,,,
옛날에 시발점 보면서 가비의 리 얘기가 나온 적이 있는데 수상이었나.. 이렇게도 적용이 되는 거였네요
흠 가능하긴 하지만 흔한 경우는 아니니 꼭 알아야 한다는 아닙니다 :)