수2 자작문제
난이도 중하-중 정도 문제들입니다. 첫 번째 문제는 간단한 연습문제이고 두 번째 문제는 중간 난이도 정도의 연습 문제인 것 같습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김동욱 1
슬슬갈게요
-
알바앱보면 사장이 원하는 기간이 있잖아요 혹시 군대같은 어쩔 수 없는 사정으로...
-
오히려 야스씬 없는 순문이 있나 싶을정도임
-
싸우는거 얘기하는건데 이상한 생각하신거아니죠?
-
아놋.
-
잘 키워줄게밥은 안 줌
-
하아
-
강대 재종 질문 1
강대 내가 원하는 쌤 넣으면 들을 수 있는건가요? 분위기는 어때요?? 아는애들 많이...
-
우웅 3
ㅋ
-
컴공 일기265 13
https://school.programmers.co.kr/learn/courses/...
-
ㅁㅌㅊ?
-
존나 싸워;;;;;;; 님들 에타도 이래?
-
휴 긴장됐어...넘쎄게부르는건아닌가..
-
안녕하세요 6
-
수학강사이미지 제외
-
그 사람 연관 검색어 보나요?
-
일어서야해..
-
감점 겁나 크더라.. 올해 수능 보시는분들 공부 조금씩 미리 해두셈
-
난 가야할 때를 모르겟어
-
이투스 패스 결제완료 10
박모씨 강의 수강 준비 완료
-
상실의 시대 14
합법적 야설 goat 제 3인류도 좀 있었던 기억이
-
이때 교수님들 ㄹㅇ 잡아와야함 문제 겁나 yummy 하네
-
한국수영탐탐 7
1+6+4+4+2+0
-
유혹의 기술 18
으흐흐흐
-
에휴이.. 8
에휴..
-
제가 아는 사람중 최고였어요..
-
전 딱히 없음..숫자들은 그 자체로 모두 아름다움
-
일클1주차는 좋앗는데 아니 문학듣는데 배우는게 1도없음 처음엔참앗는데...
-
설전에만 해줘 제에발.....
-
저 영어 빼고 12개인데 국어가 절반을 차지함
-
애니 추천좀 2
전에 오르비에서 어떤 분이 무직전생 추천해줬는데 ㅈㄴ 재밌어서 50화 다보고...
-
https://piuh.sktelecom.com/common/selfCert 가서 신청 ㄱㄱ
-
하나도 없음..
-
국민대 다군에 적었는데 올해 상위권 대학에 다군이 많이 신설돼서 추합이 예년보다...
-
바로 앞에 있는 책들만 15
참고로 4권부터는 비닐도 아직 안 뜯음ㅋㅋ
-
윤도영 올어바웃 0
Hard 단계부터 스킬 알려주는 건가요?? 또선생 과탐 공대 생명 의대 논술
-
진짜 연예인인줄요 팔로우했습니다 앞으로도 좋은 게시물 부탁드립니다 아니 얼굴빼고님...
-
오야스미 1
네루!
-
극한상쇄되는거로 생각해라 하프모는 개쓰레기다 시발점만 해도 2는나온다
-
슬슬 짐정리를 해볼까..
-
드라마도 좋음
-
진짜 신기한 팀 1
라리가 15위면서 소시지와 노랭이한테 3점차 대패를 당하지만 꼬마와 바르샤는 찢음 ㄷㄷ
-
동국대 경찰행정학부입니다.
-
언제나옴
-
.
-
기트남어가 뭐임 2
베트남어 정도로 선택자가 없다는 거신가
-
https://orbi.kr/00071395929/입결표의-맹점,-주의해야할-점...
-
나니아연대기 광팬이었음 14
수잔인지 수지인지 뭐시기는 ㄹㅇ 엄이라 생각함
-
현재 냥컴에 합격한 상태입니다 그런데 26학년도로 약대를 지원하고 싶습니다 문제는...
-
저는 시이나 마시로
12번 2번?
fg 곱에 관한 조건이 참신했습니다 ㅎㅎ 객관식 4점 초중반으로 적당한 것 같습니다!
감사합니다:) 평소 JN님 자작문제에서도 많이 배우고 갑니다
아무리 생각해도 f(0)이 0 또는 음수가 나와서 f(0)=9를 만족하는 경우가 떠오르지 않는데 제가 뭔가 놓쳤나봐요... 출제자님의 풀이가 궁금합니다
여전히 잘 모르겠습니다 ㅜㅜ f(0)이 양수이고 f(-inf)가 음수이므로 사이값 정리에 의해 f(k)=0인 음수 k가 존재하여 x=k에서 g가 미분가능하지 않은 것 같은데(이미 3이 근이므로 k에서 삼중근은 불가능) 이 부분 한번만 검토 부탁드립니다!
14번 정수조건은 왜 주신건가요?
저는 판별식에서 막혔어요 풀이좀요..
문제에 오류가 있어서 수정했습니다. 죄송합니다. 정수 조건은 답을 구하는 과정에서 필요합니다.
14번 답 4번?
조건을 꼼꼼하게 적용해야 맞힐 수 있는 문제네요!
저도 방금 전에 극값 존재 조건 빼먹었다 틀려서 지우기도 했고요 ㅎㅎ...
실제 시험이었으면 실수하는 사람이 많아서 충분히 14번급의 오답률이 나올 것 같습니다
좋은 문제 감사합니다!
문제 오류 알려주셔서 감사합니다. 덕분에 문제 수정할 수 있었습니다. 좋은 연말 보내세요:)
14에 답 1번 아닌가요
-9<a<=3 에
f=(x-3)(x^2+(3+a)x+9) 나옵니다
눈으로 풀어서 제가 틀릴수도
함수 f(x)의 극값이 존재해야 하므로 f(x)의 도함수의 판별식을 고려해야 합니다. 이를 고려하면 f(4)의 최솟값은 a=1일 때, f(x)=(x-3)(x^2+4x+9)로 f(4)=41이 나옵니다.