낫
Q. Can a boundary map on a long exact sequence of homology on manifold be interpreted as an actual topological boundary of a manifold representing the homology class?
A. True if the class is representable by a manifold with boundary. If $M$ is a compact $n$-manifold with boundary, it has a fundamental class $[M]\in H_n(M,\partial M)$ (coefficients being whatever as long as you're orientable w.r.t. them) and its image under the connecting homomorphism of the pair $(M,\partial M)$ is the fundamental class $[\partial M]\in H_{n-1}(\partial M)$ of the closed $(n-1)$-manifold $\partial M$ with the induced orientation. So, if $f\colon(M,\partial M)\rightarrow(X,A)$ is some map of pairs (the representing manifold of a class), naturality of the pair sequence yields $\partial(f_{\ast}[M,\partial M])=f_{\ast}[\partial M]$ and if $M$ is closed, this is zero, but that's not surprising cause the element then factors through $H_n(X)$ and the composite $H_n(X)\rightarrow H_n(X,A)\rightarrow H_{n-1}(A)$ is zero.
Intuitively, If $[\sigma]\in H_n(X,A)$, then $\sigma$ is some chain in $X$ with boundary inside of $A$. Since it represents a homology class, it should be a cycle, but it need not boundary anything entirely in $A$, so it could be a nonzero representative in $H_{n-1}(A)$. In other words, if $\sigma\mapsto X$ is a chain so that its topological boundary $\partial\sigma$ be mapped entirely into $A$. This boundary represents an element of $H_{n-1}(A)$. Although this is a more or less intuitive argument, this is exactly what's happening on topology. Algebraic machinery is just make this rigorous in algebraic language.
Q. How do you see the Alexander duality?
Rmk. Alexander duality: Let $X\subset S^n$ be a submanifold. Then $H_{p}(S^n\setminus X)\simeq H^{q}(X)$ where $p+q = n-1$. Or, $H_p(\Bbb R^n\setminus X)\simeq H^q(X)$ where $p+q = n-1$.
A. One of the most important interpretation of Alexander duality is via linking numbers of submanifolds, or more generally $k$ cycles. Consider $k$-cycle $z$ in the space $X$ of dimension $k$, and an $(n-k-1)$-cycle $w$ in the complement of $\Bbb R^n$. Then $w = \partial v$ in $\Bbb R^n$ for some cycle $v$. Now take the algebraic intersection (cup product) of $z$ and $v$. This defines a bilinear pairing $H_k(X)\otimes H_{n-k-1}(\Bbb R^n\setminus X)\to\Bbb Z$, called the linking number and gives an Alexander duality. Note that the linking number here is compatible with the linking number in the classical links in $S^3$. This is just a high dimensional analog. See this answer for more geometrical interpretation of high dimensional linking number https://mathoverflow.net/a/332250/323920
Under this interpretation, in case of knot $K$ not link in $S^3$, $S^3\setminus K$ can be thought as a "dual knot" which has linking number 1 with $K$. In particular, every knot complement has $\Bbb Z$ in the first homology, generated by a single "dual unknot" (meridian) of $K$.
One can actually define linking number from Alexander duality as follows: This time we let $M^p,N^q\subset\Bbb R^n$ be closed connected oriented manifolds with dimension $p$ and $q$ and $p+q = n-1$. Then by Alexander duality, we have $\Bbb Z\simeq H^p(M)\simeq H_{q}(\Bbb R^n\setminus Z)$. Now we consider the induced map $i_*:H_q(N)\to H_q(\Bbb R^n\setminus M)$ via inclusion $N\hookrightarrow \Bbb R^n\setminus M$. This map sends the fundamental class of $N$ to some integer times the fundamental class of $H_q(\Bbb R^n\setminus M)$, obtained by the isomorphism from Alexander duality. This integer is exactly the linking number of $M$ and $N$. You will see without much difficulty that these two back and forth are compatible.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
상위권인데 확통을 고르면 그냥 저능아였음 무서운건 확통 상위권은 애초에 지구과학에...
-
그냥 끄적이는거니까 너무 나쁜말은 ㄴㄴ 응시인원에 한해서 정시성적으로 뽑는건 어떻게 생각하실까요
-
매우 고민중 0
1. 지방 메디컬(과탐 가산 5퍼) 목표 2. 원래 물1지1 3. 물1 표본 때문에...
-
음식만들기,자리청소 큰매장에서 할거 많던데 알바생은 요즘1명이더라
-
성심당 도착 3
무슨빵먹지
-
만 뽑는 과도 있더라 실화냐
-
애초에 확통은 다맞아도 메리트 없고 틀리면 그냥 나락행 고속열차인데 표점차이...
-
생1 하려고 올 수능 시험지 봤는데 유전 너무 흉악하게 생겼네요
-
예상등급컷대로라면 공부량대비효율 확통>>기하>>>>>>>>>미적같은데..
-
좀 이상하긴 함 틀닥새끼가 나이먹고 유세부리냐고 하면 난 현역때부터도 이생각해서 안깝치긴 했음 ㅇㅇ
-
확통이랑 표점차이 줄어듦 애초에 미적이 어려운 문제 도장깨기 성공하면 확통보다...
-
외대 사회 T2 0
시간 10분 남기고 막히는 거 없이 다 적어서 들떠있었는데 커뮤 여론이 다...
-
공통 9번, 10번이 4점임을 감안하면 미적 27번 난도는 좀 문제 있는 거 같긴 해요..
-
언매92 미적85 영어 1 임 ㅎ… 그무엇도 1등급인지 모름 그래도 가보는거 추천?
-
소름돋아
-
작수12번틀리고표점134 내인생을바꿔놓음
-
Step나눈건지 모르겠음
-
빵 되게 많을 것 같음
-
건대 상경에서 경희대 회계세무학과 가는건 별로일까요? 3
회계사가 꿈입니다.
-
오지개념 스텝2 까지 해야 이신혁쌤 따라갈수 있을까요? 1
겨울방학부터 이신혁쌤 현강 들으려하는데 스텝2 까지 꼭 수강해야할까요?
-
과는 수교 생각하고 있습니다. 집이 대구 근방이라 경북대 고민중… 집안 형편이...
-
과탐노베임 근데 다들 막 표점차 이정도여도 사탐이 쉬워서 이득이다 이러길래 그...
-
ㅈㄱㄴ
-
중대 논술 5
개좆망~ㅜㅜ
-
망각률이 엄청 많이 차이남 ㄷㄷ 이런 이유는 각성(깨어있음) 동안에 여러 자극들이...
-
문제도 못풀고 최저도 안될 확률 높은데 집에서 쉬어야지..
-
설약 입결 0
표점 얼마여야 하는지 구체적으로 알고 싶습니다 그리고 작년 시대 입결표 보니까...
-
2학년 내신으로 정법을 하긴 했는데 3학년 선택이 세지사문이라 수능까지 같이 하는게 나을까요?
-
의문이었는데 생각해보니까 나같아도 국영수 5등급한테 내 몸 수술 안맡기고 싶을듯
-
1컷 41이면 최저맞추는데 면접준비 할까요? 아님 걍 하지말까요...솔직히 가능성없어보이는데
-
수학 29번 실수만 안했어도.....
-
ㅇㅈ 1
걍 싼거 삼
-
흠
-
2컷 39점
-
너 짱 0
너짱
-
하 (논술로) 전과 하고싶은데 ㅠㅠ
-
디시보고 느낀점 1
이런 사람들이 의사가 된다라..
-
ㅠㅠ 48도수 거의없을 거 감안해도..... 해볼만하진 않으려나 ㅠㅠ
-
지금 진학사변표 0
지금 통합변표인지 분리변표인지 아직 발표안한 대학들은 진학사에서 그냥 자체적용한건가요??
-
옥린 옥루 유씨 오렌지 (이새기가 제일 악질) 이런거 예상하다가 나온거: 똥을 싸질렀다 킥킥
-
좃.뺑이 공짜 인력으로 불려서 일하고 있으니까 먹을 거 찾으신다고 교수실 가서 사탕...
-
메이플 탄지로 3
스우까지 컷 캬캬
-
똑똑한애들이 설공가야됨 31
원래 둔재들이 메디컬가고 진짜 똑똑한 애들이 설공가야된다고 봄 난 범부라 서울대가면...
-
몇개 맞추셨나용….. 인칼분들만 해주세요‘ㅜㅜㅜㅜㅜ 냥논 냥대
-
님들이면 어디감? 참고로 삼수생임
-
국어 선택 0
국어 강사 누구 들을지 고민중인데 주간지랑 이것저것 빵빵해서 김승리 들을까요?...
-
윤도영쌤이 2026년도 탐구선택가이드 올릴때까지 선택미룰것같은데 그동안 국영수만 할까
-
미적 2컷 2
미적 1틀 76점인데 2등급 ㄱㄴ? 표점때문에 가능한가
-
나 답은 맞은거같은데 필력이 개판이라 기대가 안되네
-
고대 사과탐 통합변표 기원 1일차
첫번째 댓글의 주인공이 되어보세요.