[칼럼] 문제 풀이의 방향성에 대한 조언
안녕하세요. 김지헌T입니다.
문제를 풀 때 어떤 방향성으로 접근할지 결정하는 것은 해결의 첫걸음이자 가장 중요한 단계라고 할 수 있습니다.
이번 칼럼에서는 230622을 예시로 들어 이 문제의 3가지 해설 방법을 소개하고,
이를 토대로 수학 문제를 풀 때 방향성에 대해 조언을 드리고자 합니다.
1. 유리화 접근 :
일반적으로 유리화는 무한대-무한대의 형태에서 주로 했었다는 사실을 많은 학생들이 알고 있을테죠.
위의 극한식에서는 -를 기준으로 분자에서 왼쪽항과 오른쪽항을 분리하여 따로 표현하면 무한대-무한대가 됩니다.
하지만 이때 조심할점은 g(t)가 0이라면 각각의 항들이 0/0 형태가 되면서 0/0 - 0/0이 되는 반면,
g(t)가 0이 아닐때 무한대-무한대 형태가 된다는 점이겠죠!
따라서 g(t)가 0일 때, 아닐 때에 대해서 문제의 기준점이 생김을 토대로 직관적인 풀이가 가능합니다.
이 문제는 극한값 자체가 아닌 극한값의 존재성만 물어봤으니 조건만 읽자마자 g(x)=0의 실근을 알려줬구나
라고 생각하면서 접근하면 좋겠지요.
2. 미분계수 해석 : 이 접근법의 근거는 극한식이 미분계수의 정의와 매우 비슷한 형태라는 점입니다.
x → -3일 때의 극한을 구하는 것은 x = -3 근처에서의 함수의 변화율을 분석하는 것과 유사할 수 있습니다.
3. 변수 분리 접근: 이 방법의 근거는 극한식에 x와 t 두 변수가 동시에 등장한다는 점입니다.
g(x)와 g(t)가 별도로 나타나며, 이들의 관계를 분석할 필요가 있습니다.
또한, t값에 따라 극한의 존재 여부가 달라진다는 조건이 주어져 있어, x와 t를 분리하여 생각할 필요성이 있죠.
이 접근법은 복잡한 식에서 변수 간의 관계를 명확히 하는 데 유용합니다.
각 접근 방식은 극한식을 어떻게 바라보는지에 따라 나뉘게 됩니다.
1. 유리화 접근은 극한식의 형태(무한대-무한대 또는 0/0의 형태)에,
2. 미분계수 해석은 순간변화율으로 해석가능함에,
3. 변수 분리 접근은 두 변수 간의 관계에 주목합니다.
이 세 가지 접근법은 모두 주어진 극한식에서 학생들이 어떤 정보에 가중치를 뒀냐에 따라
충분히 합리적인 방법이 될 수 있다고 생각합니다.
물론 이 문제의 경우 1. 유리화 접근이 주어진 극한식을 대하는 가장 좋은 해석이라 생각합니다.
하지만, 유사한 형태의 다른 문제에서 2. 미분계수 해석 또는 3. 변수 분리 접근이 쓰일 수 있겠지요.
사실 230622도 유리화로 접근하지 못하고 미분계수로 해석을 했더라도 충분히 풀 수 있는 문제였습니다.
여러분, 풀이가 합리적으로 시작만 했다면 생각보다 방향성은 중요하지 않습니다.
공부를 할 때는 여러가지 풀이를 배우며 안목을 늘려두는 것이 중요하겠지만
시험을 칠 때는 '이게 가장 괜찮은 길인가?' 의심하며 되돌이표를 찍지 않아도 괜찮습니다.
모로가도 서울만 가면 되니까요.
여러분에게 항상 도움이 되고 싶습니다.
감사합니다.
김지헌 수학 핏모의고사 (지헌모) 2025 판매중입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어지럽네 0
여러 의미로... 일단 졸리네요
-
올해 들으려고 했는데 대성에 안 계시네요 ㅜㅜ
-
성불 2
아멘
-
계엄령 = 비폭력적(nonviolent) 계몽 운동 0
ㅇ칸트의 코페니쿠스적 전환에 바탕 ㅇ윤, 학문에 조예 깊어 ㅇ학자의 소신으로서...
-
⭑ 계엄령은 예방의학적 백신(vaccine)이었다. 0
ㅇ트럼프의 당선 시 관세 폭탄이 기정 확실시. ㅇ계엄령 =...
-
벌써 수능 칠때인가
-
⭑ 조국이는 나라를 말아먹는 족국(foot-soupe)이다. 0
퇴(退)앳!
-
ㅇ이번 계엄령은 고도의 정무적 판단의 포석이 깔린, 비폭력적(nonviolent)...
-
궁금하네요
-
맞팔구 3
ㅇㅇ
-
야당의 국정 마비로 나라가 망할 수 있겠다는 생각이 든다. 일본을 보면 참으로...
-
기차지나간당 4
부지런행!!! (프사바꿈 어떰)
-
새삼 저런 버러지하고 1년을 싸워온 의사들은 대체.. 0
당신들은 대체 어떤 싸움을 해오고 계셨던 겁니까
-
씨빨새끼야 목매달러가라 씨발 존나좆같네 개병신새끼
-
⭑나라의 내년 국가 계획을 막고 탄핵을 일삼는 야당의 행태 0
c척결해야 한다.
-
대 기 상ㅋㅋ
-
⭑ 간디(Gandhi)도 울고 갈 비폭력(非暴力) 계엄령 0
영국의 부당한 식민 지배에 맞서 비폭력 평화주의로서 자유를 찾은 간디와 같이 야당의...
-
그렇다.
-
⭑ 타국 대통령 방한 중 계엄령, 정무판단이었음을 입증한다. 0
윤석열 대통령과 사디르 자파로프 키르기스스탄 대통령이 3일 용산 대통령실에서...
-
윤석열 대통령과 사디르 자파로프 키르기스스탄 대통령이 3일 용산 대통령실에서...
-
위 세 명의 인물 중 누가 옳겠는가? 본디오 빌라도에 고난받으사 십자가에...
-
이젠 폴리페서도 아니긴 한데 보기 역하네
-
이를 막기 위함이 헌정 질서의 수호라 하겠다. 이것이 계엄령의 요건이라는...
-
도대체 되돌아보아 묻지 않을 수 없다. 조치를 취하기까지 무얼 했는가? 방탄 국회...
-
생각을 해보자 생각을
-
[속보] 국무회의서 '계엄 해제안' 의결
-
7시-1시인데 낮시간에 공부하면 ㄱㅊ지않나
-
⭑ 尹계엄령은 정무 정책, 쌍팔년도의 계엄령만 생각하는 꼴통들 1
게임 이론(game theory)의 게임과 같이 계엄령은 하나의 게임이 된 것이다....
-
다 내 또래라는거 어쩌면 나보다 어릴수도 있는 놈들... 감정이입도 되고 군대...
-
똥글들좀 지우고 싶은데 진짜 쓴 글 수가 너무 많아서 엄두가 안 나네요
-
암(cancer)에 대해서는 다소간의 부작용이 있더라도 항암제를 투여해야 한다....
-
⭑ 윤석열은 우리 정치사의 갈릴레이(G. Galilei)이다. 0
모두가 지구를 주위로 공전(公轉)한다고 할 때 이것이 아님을 지적하고 바로 잡고자...
-
이제 점심밥 생각이나 하려구요
-
전문직 GOAT 0
의사=종북세력과 비슷한 수준으로 다뤄야할 집단전공의 복귀=정치활동 금지, 언론통제,...
-
성적 팍 뜀? 제 주변엔 그럼
-
⭑ 尹, 암(癌)을 도려내기 위해 '메스'를 잡다. 0
윤석열의 대담한 정무 판단에 전세계가 주목하고 깜짝 놀랄 것이다. 트럼프 당선인이...
-
올해는 5시까지 잠을 안재워버리네 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
일단 자야지
-
⭑ 윤석열의 대의(大義)를 못보는 관견(管見)의 꼴통들 0
윤석열은 큰 뜻을 품고 자신을 희생하면서까지 살신성인(殺身成仁)하였다. 그 뜻은...
-
안녕하세요 4
인터넷에서 이 글 보고 오랜만에 생각나서 왔네요
-
다음 대통령도 보수인거보면 goat아님?
-
좌파건우파건 0
우선 민주주의 안에서 싸워라ㅏ 민주주의 없음 그냥 북한 시즌2다
-
할일 다했나보네 3
불의의 사고로 죽거나 다친 또는 실종되신 분들 소식을 들을 수 있으려나요
-
헉
-
애초부터 정치를 잘해서 총선을 이겼어야지 자기들이 못해놓고 남탓만 한 주제에 이제와서 뭘 따짐
-
너무 빅떡밥이라서 못함 하 이제 언매 없는 언매 공부 안해 화작으로 갑니다
-
⭑ 윤석열은 나찌(Nazi)에 항거한 지사(志士)와 같다. 0
야당이 초 거대 다수당으로 국회를 장악하고 국정 마비를 시키는 것은 국민 찬동으로...
-
ㅋㅋ
-
정보사회가 쌍방향이니까 제공자랑 수용자 구분이 불명확한거 아님? 왜 B가 정보죠..
선생님 노베들을 위한 칼럼도 부탁드려요
글 내용에 너무 동감합니다.
100분이 생각보다 긴 시간이라 뭐 효율적인 풀이를 딱히 찾지 않더라도 논리성만 정확하다면 100분 내에 30문제를 풀어내는데에 전혀 문제가 없는데 말이지요.. 오히려 시간이 부족하거나 문제를 풀어내지 못하는 경우는 어떤 문제를 논리성은 정확하지만 너무 비효율적으로 풀어서가 아닌 자기 논리성에 대한 확신이 없어서 오래 걸리는 경우 / 문제의 논리의 실마리를 하나라도 잡지 못하는 경우더라고요
생각보다 최선의 풀이방향성에 대한 고민은 중요한 것 같지 않습니다 많이 풀다보면 효율적으로 나아갈 수 있고요
와 근데 짝수 홀수로 접근하는건 대박 좋은 풀이 같네요. 좋은 칼럼 감사합니다