9평 다가온 김에 렌즈 칼럼
렌즈 왼쪽에서 물체를 움직이며,
물체의 위치에 따른 상의 크기를 나타내보겠습니다.
그래프가 대략적으로 이렇게 그려지겠죠.
0.5f처럼 f보다 오른쪽은 허상이 생기는 곳이고,
3f처럼 f보다 왼쪽은 실상이 생기는 곳입니다.
딱 f에는 상이 생기지 않겠죠.
한편, y축에 '상의 크기' 대신 배율을 넣어도 똑같을 겁니다.
y축을 배율로 바꾼 뒤에, 알고 있는 사실 몇 개를 그래프에 추가해보겠습니다.
첫 번째는 y절편이 1이라는 사실입니다.
허상은 배율이 1보다 클 것이고,
물체가 렌즈에 다가갈수록 배율이 1에 가까워질테니까요.
(작도를 통해 생각해보세요)
두 번째는 2f에서 배율이 1이라는 점입니다.
렌즈 문제를 많이 풀어봤다면 알고 있어야 할 사실이죠.
이렇게 그려놓고 보니, 왠지 모르게...
"그래프가 선대칭이진 않을까?"
하는 생각이 듭니다.
신기하게도 이 추측은 사실입니다. 그 말인즉슨
1.2f에서 배율과, 0.8f에서 배율이 같습니다.
둘 다 f에서부터 같은 양만큼 떨어졌기 때문입니다.
예를 들어, 문제에 이런 상황이 주어졌다고 합시다.
렌즈로부터 2L만큼 왼쪽에 물체를 뒀을 때와,
렌즈로부터 8L만큼 왼쪽에 물체를 뒀을 때
생기는 상의 크기가 같다.
그럼 독자는 f=5L이라고 바로 찾고 시작하는겁니다.
근데 배율이 같을 때만 써먹을 수 있다면 활용도가 너무 떨어집니다.
확장을 해보겠습니다.
사실 이 그래프는 말이죠, y=1/x 처럼 반비례 관계를 찾을 수 있습니다.
잠시 y=1/x 그래프를 관찰해보겠습니다.
위 그림처럼,
y축으로부터 떨어진 거리가 1:3이라면
함숫값이 3:1이 됩니다.
이런 일이 배율 그래프 위에서도 생깁니다.
이유는 뒤에서 소개해드릴 건데요,
일단 예시를 통해 뭔 말인지 이해부터 해봅시다.
초점이 2L인 렌즈에서, 3L과 6L에 뒀을 때 배율이 궁금한 상황입니다.
초점으로부터 떨어진 양이 1:4이므로,
3L에서 배율이 4배입니다.
하지만 이걸론 부족합니다. 진짜 배율이 각각 몇인지 알고 싶으니까요.
이때 2f (여기선 4L)에서 배율이 1이라는 사실을 이용해줄겁니다.
4L에서 배율이 1이기 때문에,
4L에 비해 떨어진 거리가 절반인 3L에서는 배율이 2,
4L에 비해 떨어진 거리가 2배인 6L에서는 배율이 1/2 입니다.
이걸 이용해 아래 평가원 기출문제를 풀어보세요.
답은 1번입니다.
수직선 그어놓고 이 정도 표시만 해주면 바로 답이 나옵니다.
한 번만 더 응용해보겠습니다.
아래 그림처럼
빨간 위치에 물체를 두면 배율이 1,
파란 위치에 물체를 두면 배율이 2라고 해봅시다.
이때 초점의 위치를 바로 알 수 있습니다.
2:1 내분점에 초점이 위치한다고 바로 찾을 수 있겠죠.
혹은,
초점이 여기에 있어도 말이 되겠네요.
이번엔 2:1 외분점입니다.
배율 그래프에서 '반비례 관계'를 찾을 수 있는 이유도 짧게 알아보겠습니다.
좌변은 배율을 의미합니다.
우변은 그려보면...
지금 변수가 a인겁니다.
변수를 헷갈리지 말라고 그림에는 a대신 x를 써뒀습니다.
식의 꼴을 보니 반비례인 이유를 아시겠죠.
y=1/x 그래프를 f만큼 평행이동한 셈입니다.
근데 그동안 이런 거 없이 렌즈 문제 잘만 풀어오셨을 겁니다.
사실 저도 많이 쓰진 않아요.
그런데 은근히 이걸 쓸 각이 보일 때가 있습니다.
그 각을 본다면 계산과 시간의 측면에서 꽤나 이득을 봅니다.
마치 여러분이 수학에서
삼차함수 2:1 관계를 모든 문제에 쓰진 않으나,
필요시 적재적소에 쓰는 것처럼요.
물론!! 본인이 렌즈에 숙달된 게 아니라면
이런 걸 익힐 때가 아닙니다.
항상 기초가 우선입니다.
렌즈는 계산만 착실히 잘해도 다 잘 풀리니까요.
준비한 내용은 여기까지입니다.
아직 할 말들이 남아서,
기회가 되면 렌즈2편도 가져오겠습니다.
도움이 되셨다면 좋아요 누르고 가주세요
다음에 또 좋은 글로 찾아뵙겠습니다.
#무민 #물리학2
0 XDK (+10,000)
-
10,000
-
결혼하고싶다 와이프한테 이것저것 요리만들어서 먹이고싶다 앞치마 두르고 요리하고...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
걍 일러 투척 7
-
자러 갈까요 8
미적을 더 하고 싶기도 사실 한 페이지밖에 안 함뇨..
-
이동준 강기원 0
예비고3이고 시대 둘다 신청 성공해서 갈수있는데 두분 병행하면 많이 빡셀까요?...
-
기본으로 4그릇 이상먹었고 아직도 카레 8그릇 먹은게 기억남 치킨 1마리 먹어도...
-
저런거 보면서 나도 좋은대학교 가서 면접으로 한번 일반인참가자로 참여ㅋㅋ해보고싶다는...
-
수지맞는 장사잖소
-
운동신경 ㅈ도 없어서 팔굽혀펴기랑 턱걸이밖에 할 줄 아는 거 밖에 없는데 구기...
-
투표좀요 0
어떨지 궁금하네여
-
11월말부터 12월초까지는 수학만 12월중부터 12월말까지는 영어/국어만 해보려하는데 어떨까요?
-
그것도 모르고 수2에서 어왜진동안나오지 이랬네..
-
그 누구도 그 원칙에서 벗어날 수 없고 따라서 언젠가는 너 또한 피비린내를 풍기게 될 것이다.
-
오늘 화학수행평가봤는데 조를 짜서 실험하고 관련된보고서작성하는거였음 보고서는...
-
김범준 기대되네 5
저렇게 호평일색인데 한완수 하고 있던 나도 궁금해짐 기말끝나면 스블 나와있겠네 근데...
-
지구고수분들 4
이거 ㄷ 판단하는거 이해가 안됨 내가 모르는 공식이 있는거임?
-
1~2교시 수1 3~4교시 수2 5~7교시 확통 여름방학때 정시로 돌리고 이렇게...
-
24학년도 배기범t 모의고사 풀었는데 계산실수로 20번 날리면서 47점..10시...
-
ㅇㅈ 0
사실 기습 연혐이야.
-
링크 좀 알려줘라 나도
-
허황된 꿈 0
서울대가기-
-
컴퓨터를 켰는데 3
배경화면 참 예쁘네.. 두 개 돌려가며 쓰고 있는데 둘 다..
-
Zzzz 14
-
고2 모의고사 3등급정도 뜨는데 그냥 기출푸는게낫나요?
-
숭실대 낮은과 될까요? 진학사는 간당간당한다고 떠서 ㅠㅠ
-
올오카 8권 매월승리 1-3호 빌런즈 선택(화법과작문)인데 살사람 있으시면 쪽지 오세용
-
할 수 있는 활동은 다 해야 하고 학급임원에 발표에 쌤 이거 생기부써주실수있나요에...
-
일본어 잘 아는 편은 아니긴 한데 솔직히 개인적으로 한국노래 보다 좋다고 생각함
-
질문 받습니다 6
뭐든 가리지 않고 답변해드립니다
-
무물할까요.. 16
3명 정도만 왓으면 좋겟다
-
예비고3 정시 작년에 대종쌤 step0,1 체화서까지 다 풀었는데 올해는 승리쌤...
-
미적분 책을 펴고
-
수능 끝나면 며칠 내에 바로 내년 커리 준비하고 조정식t는 수능 끝난 당일에 26...
-
이과 사탐런 조사
-
지상철 역 건축
-
사실 그거랑 상관없이 사려고는 하는데요..
-
네.
-
얼른 사탐 공부하고싶다
-
시대인재 수학 미적분 현강을 들으려고하는데 강기원,김성호,송준혁,엄소연쌤의 각각...
-
고백할 거 0
오늘 깨어있는 15시간동안 논술공부 하나도 안하고 작곡공부도 10분 함 한양대는 글렀다
-
무물보
-
인서울 의대 가고시퍼요.. 잘봐서 올림!!
-
ㅎㅇㅈ쌤… 하아… 대성 수학 강사 추천해주세요 수학 잘 못해요 3-4정도.....
-
인강 커리 질문 0
예비고3인데 지금 물리,지구 인강 개념을 듣고있습니다 물리는 역학적에너지 보존...
-
일단 우리학교는 학종 지원보다 3배 많은 인원이 논술을 씀 저도 한두장은 수리 논술...
-
ㅇㅈ 4
어떤 GOAT 오르비언분께서 보내주신 수능 샤프 ㅇㅈ +) 수정테이프 연필 지우개
https://orbi.kr/00064989284
배율공식 f/a-f 아닌가요?
그리고 2l 8l상황에서 배율이 같으면 f =5l아닌지도...
렌즈? 렌즈! 렌즈! 렌즈!
ㄹㅇ광기
물리 모루지만 좋아보여서 좋아요튀
맛있는 글 감사합니다!
아 이 렌즈..
감사합니다! -렌즈 크리스타-
문제 풀면서 막연하게 쓰고 있던 게 확실하게 정리되는 거 같네요
감사합니다!!
와! 렌즈! 씹리학2 아시는구나! 혹시 모르시는 분들을 위해 설명드립니다 전자기와 도플러와 함께 의문사 복병 삼대장으로 진.짜.겁.나.귀.찮.습.니.다.
푼 건 모조리 피해가고 오목렌즈 거울 다 빠져서 만만히 봤다가 거들떠도 안 보던 다중렌즈로 뒷목 잡게 되는데 정답률 보면 나만 틀립니다...
하지만 이러면 절대 깰 수가 없으니 제작진이 치명적인 약점을 만들었죠. 바로 사탐런이라는 것입니다...
눈에 끼는 렌즈인 줄 알고 들어왔는데…
와! 렌즈 아시는구나!