[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
죽고싶다 2
국어병재발
-
보닌 2
중딩 때 좀 축구도하고, 연애도 해보고, 재밌게 놀고 명문고닥교 드가서 친구들이랑...
-
기미또날라라테 오모데타테 이와나이 게토네
-
혜택은 수시가 누리고 모집정지는 정시가 당하라고? 이게 말이되냐????
-
강x 15회 0
96..22틀 22번에서 뭐에 씌었는지 이악물고 미분 안 하다가 계산 노가다 후...
-
아니 별로 갈드컵 열고 싶지 않았는데 웃겨서 적어봄 2
의대 모집정지 확실한 거 아니고어차피 지금 일도 아니니까 그냥 공부하자 한마디...
-
공대생/디자인대생 필독) 카티아 인터넷 꼽고 사용하지 마세요 1
제가 며칠 전 학원 동료 짝지 수강생에게 들었는데 카티아 개발 회사인...
-
메디컬 6
의대 치대 한의대 수의대 간호대
-
대성패스 추천 0
서로 윈윈해여 ㅎ 해주시면 내년 수능 대박나실거에요!! 아이디 : sky0524o
-
1등급 아니면 하등 도움 안될듯 너무 어려워서
-
원래 제사전에 국어 원점수 앞자리 9의 가능세계는 없었는데 간혹 이감같은 사설에서...
-
언매 많이 쉬웠었음? 수능때도 이럼 좋을텐데
-
나만.. 나만... 나만 어쩌다가 80초반 받고 나머지는 ..
-
수학3등급 13
고1때많이받앗는데
-
If i lose everything in the fire I'm sendin'...
-
학고반수인데 0
지금학교가 입학후 1년동안 휴학 불가능...1학기 이후 제적이나 자퇴당하면 1년후에...
-
으앙 피곤행 4
-
하루만 잘하면 된다 11
11월 14일 단 하루!
-
작년에 봤는데 수능관련 기억이 하나도 안나네
-
오카유 귀여워 3
오카유 너무좋아... 으히히...
-
ㅜㅜ
-
글을 아예 읽는거조차 무서웠던 증상 재발한거같은데 ㅅㅂ 어캄?
-
모집정지는 ㅋㅋ.. 대체 왜 의대를 쳐 건드려가지고 안그래도 수능때문에 불안한데...
-
지1 노베 질문 5
지1 처음 공부할 때 타 인강 패스 없이 EBS만 사용한다면 수특 전에 수능개념부터...
-
메디컬뱃이 너무 부러움 13
안정감이 말도 안된다…
-
국어 김승모 2회 -92 수학 불꽃모고 1회 -64 영어 올해 6모 - 71 동사...
-
재학생들은 학교측의 폐과 결정에 항의하며 사회학과 장례식을 열었음, 뉴스 헤드라인에...
-
기출보다 훨씬 어려움;
-
근데 투과목 선택자에는 특이한 사람이 많은거 같음 11
주변에 모고 44545를 받으며 서울대 가겠다고 투과목 한사람이 한둘이 아님
-
아... 그렇게 어려운 문제도 아닌거같은데 나만 어렵지또 ㅆㅂ 하 난 왜이러지 능지가..
-
대학 등록해놓고 수업 때만 휴가 쓰고 수업 듣고올 수 있나 갑자기 궁금해지네
-
내년에 들을려했눈데
-
1. 07년생은 최근 수능을 본 그 누구보다도 수가 많음 07년생이랑 비슷한 숫자를...
-
내년부터 의대 모집을 아예 정지 한다는 말?
-
배우는건가요?
-
어떰? 풀만함?
-
살 사람 쪽지 ㄱㄱ 비닐도 안뜯음
-
원태인 선수 잘생겼네 얼굴은 잘 몰랐는데
-
지금 빙수 먹고 싶은데 먹을까 말까
-
생윤분들 2
윤사 기출도 푸시나요..? 기시감에 문제 수록되어있긴한데..
-
실모 볼 때마다 가채점표 쓰기<< 해봤는데 능지 모자라서 가채점표 쓸 시간에 한...
-
[단독] "연세대 논술 유출" 수험생 측, 재시험 이행 소송 나섰다 3
【 앵커멘트 】 연세대학교 논술 시험 문제가 유출됐다는 논란과 관련해 오늘 논술시험...
-
[단독] 경찰, ‘연세대 논술문제 유출’ 관련 디시인사이드 압수수색 1
최근 발생한 연세대 논술문제 유출 사태와 관련해 경찰이 논술 문제 관련 글을 올린...
-
보겸 천만이네 4
상승폭 진짜 미친건가
-
해령 확장 v가 아니라 판 이동v에 대응되는거죠? [판 이동v=해령 이동v+해령...
-
나는 모든 준비를 마쳤다. 와라 달콤한 시험이여
-
91인데 수능 때 1 가능할까요ㅜㅜㅜㅜㅜㅜ
-
배탈남 하…
-
언제나 80 81 84
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ