미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
이궈궈던ㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
1. 학생회관 엘리베이터는 불과 4년 전에 바뀌었다. 그 전에 설치 된 엘리베이터는...
-
송도에서 반수하는거 거의 불가능아닌가요 휴학한다고 해도 실패하면 다시 송도에서 시작해야하는거죠?
-
메토리 ㄱㄱ? 2
이름을왜그따구로부르세요 개얼탱
-
지금 의미 없는건 알지만 불안해서 진학사, 텔레그노시스, 고속 다사서 봤는데 고속은...
-
제발
-
보보봇치 2
그사라 왜 안보이지..
-
가상자산 해킹 북 정찰총국이 주범..."핵·미사일 돈줄" 2
[앵커] 북한의 해킹조직이 우리나라 가상자산 거래소를 탈취한 사실이 확인된 건...
-
"낮에 펼쳐졌던 마법의 세계가 밤으로 이어진다는 스토리를 담고 있다."
-
숙대 통계 2
수학50%반영함
-
정x민쌤듣는데 주간지는 인강민철 사서 풀어도 괜찮을까요?? 문풀용으오만 쓰려고요
-
어떤 건가용?? 국영못 수탐잘이었는데 항상 교차가 그냥 넣는 것보다 불리하게...
-
뭐 잘못한거도 없고 그저께 까지도 디엠했고 멀리 살아도 자주 만나는 친군데 생일...
-
제발 저격 좀 해주셈뇨
-
수학 재수 0
수학은 거의 노베고 국어영어는 자신있어서 거의 모든 시간을 수학에 쏟을건데...
-
다군에 쓸 대학이 없어서 고민 중... 다들 어디 쓰시려나 다군은 상향으로 쓰는 거...
-
재수할때 한양공대 낮공도 4칸떠서 걍 지방과기원 갔는데 삼수하고 서성한 올8-9칸 기분 좋았는데
-
열등감 1
만땅
-
명지대ㅇㅈ 1
-
텔레그노시스에서 지금 60% 뜨는 경우는 실제에서도 합격 가능성이 그래도...
-
오빠 오빠 오빠 차있어?
-
만약에 중경외시를 걸게 되면 내년에 자연스럽게 서성한 이상 스나라도 갈길 수 있음...
-
아아.. GOAT분께서 제 레어를 사가셨네뇨
-
오르면 사고 내리면 팔고 차트? 모름뇨
-
ㄹㅇ
-
바램3일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 3일차
-
좋아 5
좋은아침이라는뜻
-
현재 예비 고3이고 수학은 모의고사 높은 2 고정인데 뉴런을 들으려고 수원수투...
-
준비기간 어느정도 필요할까요? 올해 69수능 포함해서 친 시험 모두 영어 1이고...
-
대학생활 관련 질받 20
Ex) 동아리 어떤 거 하면 좋을까요? ㄱㄱ 현역이들만 질문하세요 저도 1학년이라 그 위는 좀
-
ㅇㅈ 0
롤하러가야돼서 질문은 못받음 9시즌부터함
-
내년에도 노예 0
내후년에도 노예 졸업해도 노예 노숙굴을 가야 탈출가능
-
뭐지 ㅋㅋㅋ
-
맞89 4
-
스펙평가좀 16
고졸 165 62 삼수생 soxs 50주보유
-
이거는 부르는 게 값이다. 중고나라 올리면 그냥 니가 갑이 된다. 최대 보존상태...
-
성격이나 사회생활에 100퍼센트 문제있음
-
미적 69 (미4,공4) 지구 38인데 32면 좋겠지만 제발 43만 아니면 좋겠음
-
대충 10권정도 되는거같음 권당 3천원에 팜
-
이거 걍 붙음? 1
진학사보다 표본이 많긴 한데 표본이 진학사보다 경쟁력있어 보이지 않네 진학사는 7, 6, 6칸임
-
2100뭐냐 거의 기초대사량만큼 썼네 개운산 등산해서 그런가
-
살아있나
-
교필: 일반물리1,일반물리실험1,진로설계와자기이해,공학을위한컴퓨터과학적사고,일반...
-
백분위 기준(언매) 23: 75 24: 86 25: 94 일차함수로 증가중 ㅋㅋㅋㅋㅋ
-
셋 서른 여섯 예순 일곱 일흔 여덟 여든 아홉 아흔 원래 이렇게 공통된 요소가...
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=