이차함수 공통접선과 확장
오랜만에 오르비 들어와서 눈팅이나 좀 하다가
수학 질문글을 발견했습니다.
질문은 아래와 같습니다.
(원본링크는 댓글에 있어요.)
아래 그림과 같이 교점이 없고 최고차 부호 다른 두 이차함수에 대해 반드시 두 개의 공통접선이 존재하냐는 겁니다.
여러분은 어떻게 생각하시나요?
다른 좋은 방법도 많겠다만...
질문을 보자마자 제가 떠올린 건 차이함수입니다.
저 그림은 사실,
이거랑 똑같은 그림이에요.
"이거"가 뭐냐면 축이 일치되어 있고 부호는 다른 이차함수입니다.
이 경우에는 당연히 접선 두 개 날릴 수 있겠죠.
그림이 선대칭이므로 한쪽에 그을 수 있다면
그 반대편에도 똑같이 그을 수 있으니까요.
두 접선은 기울기의 절댓값도 같을 겁니다.
그럼 요지는 이겁니다.
왜 질문자의 그림이 위 그림으로 바뀔 수 있는 것일까요?
어... 답은 되게 간단한데요,
그냥 그림의 모든 함수에다가 적절한 일차함수를 빼줘서
축을 움직여가지고 반드시 일치시킬 수 있기 때문입니다.
근데 그림의 모든 함수에 적절한 일차함수를 뺀다는 게 도대체 무슨 말일까요?
아래 평가원 기출 문제를 보겠습니다.
일단 문제상황을 그려보면 다음과 같습니다.
근데 여기 보이는 모든 함수에다가 y=ax를 뺄거에요.
이때 중요한 점은, 교점의 x좌표들이 모두 유지된다는 것입니다.
왜일까요?
방정식의 관점에서 보면 그 답을 쉽게 찾을 수 있습니다.
방정식 f(x)=ax+b의 해를 구하나,
방정식 f(x)-ax= b의 해를 구하나
당연히 똑같은 해가 나올 겁니다.
두 접선이 만나는 점의 x좌표, 즉 k는 왜 유지되는지도 볼까요?
왼쪽 빨간색 접선 식을 mx+n, 오른쪽 접선 식을 px+q라 할게요.
그러면...
위를 계산하나 아래를 계산하나 해는 똑같겠죠.
그래서 전체 그림에 동일한 함수를 빼도 x좌표는 유지가 되는 겁니다.
그래서 한 번 빼볼게요.
그럼 이렇게 나올 겁니다.
사차함수가 선대칭이므로 k는 아무 계산 없이 1/2이라는 걸 알 수 있어요.
전체 그림에 함수를 "빼는" 것만 가능한가요?
아니요!
전체 그림에 함수를 나눌 수도 있습니다.
이미 여러분들이 아주 많이 쓰고 있는 스킬이에요.
궁금한 분들은 아래 링크를 타고 들어가시면 됩니다.
아 가기 전에 좋아요는 누르고 가주세요!!!
도움이 됐다면요.
#무민
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가보자가보자
-
원래 제가 좀 3
과묵한 편입니다
-
전적대(예정)에서 첫학기 다니면서 은근 후회가 많이 남았었는데 그래서 새내기 시절을...
-
고딩때 맨날 애들이랑 천박한 드립치면서 놀고 그랬는데 얌전한척 좀 하고 지낼 수...
-
나의 지능을 끌어올려
-
펜촉은 샤프펜슬?
-
시대 기출 책이 뭐에요 11
먼 기출을 모은거임
-
시대 미적 기출 0
지금 시기에 풀만한가요?
-
선착순1명이미지 3
-
대학 안 가봐서 모름
-
트럼프도 늙었다 0
4년전과 비교해보니 차이가 심하다
-
선착 1명 10만덬 10
ㅇ
-
잠이 안와... 3
잠이..
-
대학가서 연애 23
하고 싶다ㅠ 나같은걸 좋아하는 사람이 있겠지…?
-
[속보] 트럼프, 취임 선서…제47대 미국 대통령에 취임 5
트럼프, 취임 선서…제47대 미국 대통령에 취임 ■ 제보하기 ▷ 전화 :...
-
물리1 사탐런 0
논술 최저만 맞출 생각으로 현역때는 2등급 목표로 했었어서 솔직히 자이스토리...
-
강릉에 첨 들어보는 향토음식 많네요 ㅎㅎㅎ 재미있구만
-
불 좀 켜줄래? 4
너 좀 보게
-
일로와요 0
왜나한테왔어요,
-
하아 이거 내가 할 수 있는 건가..
-
선착세명만덕 15
-
새벽에똥글만싸지름
-
돌아다니다 보면 뭔가 특정 성별만 몰려있는 무리가 있을텐데 속으로 ㅈㄴ웃고...
-
와 1
동시에 댓글 3개 ㄷㄷ 엄청난 우연
-
예전에 뽑아봤는데 얼마나 아팠는지 기억이 안남 오늘 죽을려나
-
한양대 나군 0
작년에 나,다군 설 전에 조발해줬나여?? 냥대 한양대 조발 조기 발표
-
현실이 너무 차갑다... 가정사 이슈도 있고 군대도 아직 안 갔다 왔는데 몇 달...
-
패널들 말 ㅈㄴ 많네;;
-
그냥 우리끼리 일화로끝내고 다들 통매음을 걱정만했지 신고한사람이 딱히없을것같은데
-
개념단계도 힘든데 등급컷은 또 개높음
-
무물보 9
선넘질 ㄱㅊ
-
잘자
-
Tara O "선거 부정 폭로는 계엄령이 있어야 시작될 수 있었다" 0
https://x.com/DrTaraO/status/1881195779479494788
-
공대 가면 3
여친 어디서 사귐? 교양이나 동아리? 새내기라 잘 모름
-
국어는 오래 손안대도 감유지 잘되는 과목인가요? 조금 걱정되네요 틈틈히 좀 볼걸그랬나
-
우찌앎?
-
와꾸랑 키 둘다 ㄱㅊ 나쁘진 않은듯
-
댓글많은글 갔다 1
-
다 날아갑니까.. 실수로 차단햇는데 차단 푸니까..
-
대충 같은 처지면 댓글 ㄱㄱ
-
선착순한명 4
쥬지감상기회
-
이 이상으로 먹으면 술 먹은 당일은 괜찮은데 담날이 진짜 헬
-
자러 감 ㅂㅂ
-
남자 장수생은 좀 괜찮으면 오히려 그게 먹히는 경우 많고 여자 장수생은 연애하는 경우 거의 못봄
-
슐찌덴듯요 3
겨우 3병인데
-
주의사항 읽다가 힘 다빠지겠네
-
노래추천좀해주세용 10
고고
질문자 원본 글입니다.
https://orbi.kr/00068687892
정시의벽이 쏘아올린 공
ㄷㄷ닉언
캬ㅑㅑㅑ무민 님ㄷㄷㄷ