휸오 [1004637] · MS 2020 (수정됨) · 쪽지

2024-05-10 00:21:28
조회수 3,044

5월 수학 후기... 도와주세요

게시글 주소: https://faitcalc.orbi.kr/00068037955

21, 22, 29, 30번 틀림

84점


대학 다니다가... 반수 하려고 합니다...

공통이 빡빡하네요... 수학 점수 올리고 싶습니다...


28번 답 개수로 맞추기... 시험 볼 때 엄청 어려웠는데 정답률 보니 19, 20번보다 높아서 당황했습니다. 

저처럼 답개수로 푸신 분이 좀 있으신 것 같아요.



1등급 대 실력인 것 같긴 한데, 아직 84~92점 점수대 인 것 같습니다...


96점~100점 실력은 어떻게 해야 나오는 것 일까요? 


어느 정도의 발상은 가능한데, 그 이후 조금 더 필요한 디테일한 풀이를 갈피를 못 잡는 것 같습니다...




밑에 풀이 보고 뭐가 문제인지 스캔 해주시면 감사하겠습니다. 


현우진 선생님 식으로는 특수중에서 개특수만 고려하고 다른 특수의 케이스들을 고려하는데 까지 머리를 못 쓰는 것 같은데... 어떻게 하면 좋을까요?







5월 수학 시험 볼 때 한 풀이 내용 입니다.



1~8번 - 그냥 풀이.


9번 - a(n+1)-an = -4an (n>=2)로 풀이.


10번 - 속도가 계속 음수 / 음수 -> 양수 전환 되는걸로 두가지 잡고 그래프 그려 삼각형 넓이 더해서 풀이. (Case2에서 m=1 or m=8 나오지만 4/m이 2보다 작다를 기준으로 m이 2 이상이다.)


11번 - 우선 a1 > b1로 da < db 확인, a(m+1) < b(m+1) 만족하니 이 조건으로 풀이 시작. am=bm 식에서 공차 p, q로 각각 설정하고 둘을 빼면 5=(m-1)(p-q) 나오는데 p-q값이 공차가 정수인 두 등차수열 이므로 정수. m=6 도출. p-q=1 도출하여 풀이.


12번 - A의 x값 k로 설정, B는 k+2. f(x)-(1/2)x 0부터 k+2까지 적분해서 값 0. k+2로 식 묶어 낼 수 있음을 인지하고 묶어낸 뒤 60 곱해서 k값 도출하여 풀이.


13번 - 기출에서 봤듯이 그냥 점근선 b, 2^(a+3) + b 가 3b다. why? 3b에서 교점의 개수가 1개로 쭉 연속이 되야하기 때문에 점근선을 채워줘야... 풀이


14번 - f(k)=0, g(k)=0. g(t)=-tf'(t)+f(t). f(k)=0이면 tf'(t)에서 k=0  or f'(k)=0. 두가지 를 근거로 f(x)식 x(x-k)^2 설정. 6f(1)-2f'(1) = -1. f(x)에 식 대입해서 풀이. k값 도출 후 풀이


15번 - a4, a5 케이스를 1 and 4 , 2 and 3 놓고, 가능한 케이스가 2 and 3밖에 없음을 인지 후 수형도 그려서 풀이.




16~18번 - 그냥 풀이


19번 - n(A)=9 에서 양수 4개, 0 1개 캐치. 음수의 개수는 상관없음. n(B)=7 에서 음수 2개 추가 캐치. 최댓값이 되기 위해 가장 작은 음수인 -1, -2로 놓고, 양수 4개는 제일 큰 5, 4, 3, 2로 풀이.


20번 - (f차수)^2 = g차수 놓고, f와 g 차수를 1차 2차로 확정. 주어진 식에 2 대입하면 f(2)=g(2). 0 대입하면 g(0)=0. 주어진 극한식에서 분모->0이므로 g(1)=0. g(x) 2차, 근 두개, 주어진 식에서 계수 비교하여 식 도출. g(2)=-4 이므로 f(x)=a(x-2)-4 로 놓고, f-g가 (x-2)를 인수로 가지기 위해 f식 확정 후 극한 식 계산.


21번* - EC 연장선, OA 연장선 그려주고 원과 내접하는 직각삼각형 그려주고, CD값 4까지 찾은 후 각DCA를 a, 각CAD를 b로 놓고, 직각삼각형에서 원주각으로 풀려다가 갑자기 미적분 내용 되는거 같아서 길 못찾아서 포기


22번* - f가 항상 0 이상임을 캐치, g의 우미분계수가 항상 0이상임을 캐치. g그래프를 그려주고... h(x)를 a=-5/6으로 놓고 g가 불연속인 두곳에서 0으로 된다라고 풀이를 하니... h(3)이 음수인데 g(1)이 양수인 케이스가 나와서 뭐지...? -1/2와 -3/2가 위치가 왜이러지...? 하다가 포기




미적


23번~27번 - 그냥 풀이.


28번* - asinx, cosx 그래프 그려서 교점 찾고. 교점 찾은 후 그 x값 k로 설정 후 g(k)=0. k=b/2 구함. 그 이후 (나)에서 직접 계산하려 하다가, 뭔가 아닌거 같아서 부정적분으로 f*g=2F(x)+C로 놓고 풀이하려 하다가, 뭔가 아닌거 같아서 실근 하나 k, 나머지 실근 하나 π/4-k로 놓고 풀이 하려다가 실근이 2개가 아니면...? 하고 포기. 그런데 답 개수가 2가 없어서 2로 찍어서 맞음.


29*, 30번* - 건들다가 시간 없어서 포기...


0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 꺾이지 않는 마음 · 1193639 · 05/10 00:25 · MS 2022

    메인글에 작수백분위99가 어케풀었는지 생각의흐름 써놓은 손풀이 있는데 한번 비교해보시는것도 괜찮을거같아요

  • ghs11 · 1004637 · 05/10 00:41 · MS 2020

    다시 한번 봐도 제가 틀렸거나 못 푼 문제들 외에는 다 거의 생각이 많이 유사한데, 그 틀린 문제들이 전부 고난이도 문제라서 이제 어떻게 그 벽을 좀 뚫어야 하나 싶어서 글 올려 봤습니다.

    좋은 풀이 올려주셔서 감사합니다. 오답 다시 해보고 참고 하겠습니다.

  • 꺾이지 않는 마음 · 1193639 · 05/10 00:45 · MS 2022

    내가 정확히 뭘쓸수있고 뭘쓸수없는지가 명확해지면 좋을거 같아요

    28번도 결국 탄젠트 덧셈정리를 밖에 이용할게 없다라는 생각이 핵심이었죠