학생들 95%가 잘못 아는 수학 개념
바로 ‘치환적분법‘입니다.
제가 매년 학생들을 가르치면서 느끼는 건
이 개념에 대해서 제대로 이해하고 있는 학생이 거의 없다는 겁니다.
치환적분법은 얼마든지 고난도 문제로 출제될 수 있고, 출제된 적도 많은데도 말이죠.
자기가 이번 수능에서 수학 1등급 꼭 받아야한다는 학생들은 아래 영상을 꼭 참고해보세요.
제가 서울대반, 의대반 강의할 때도 학생들이 듣고 깨닫는 게 많다고 했던 내용을 담았습니다.
<치환 적분법 핵심 오개념>
1등급들은 다 되는 메타인지 나도 기르기
1달 만에 6000명 돌파한 저의 유튜브 구독자 이벤트 중입니다!
서울대, 의대생들이 썼던 ‘공진단 체크리스트’를 무료로 나눠드리고 있습니다!
내가 공부를 잘 하고 있는지, 못하고 있는지를 자동적으로 확인하실 수 있습니다! : )
더 구체적인 내용은 아래 영상 참고해주세요 :)
0 XDK (+10)
-
10
-
스나를 하라시는군 이건 하늘의 뜻이야
-
어디가 낫나요 (cpa 생각 아주 조금있음)
-
이정도면 어떤편인가요? 칸수/앞뒤 이정도 알 수 있을지… 아직 진학사를 못샀습니다 ㅠㅠ
-
슴살인데 혹시 4
소아과 가도 되나요.. 좀 부끄러운에
-
중앙대 도시계획부동산학과 어떤가요? 별로라면 전과하기엔 괜찮은 과인가요?
-
강대 신민우t 0
들어보신분 ㅇ..어떰?
-
서로 인스타 교환하자고 하는데 인스타 없으면 어캄?
-
주전공 복수전공 다 같은 학위로 취급해줌??
-
제가 현역 때 물1 지1 교육청 모의고사 보면 거의 항상 1~2 받았었는데요.....
-
자존감을 높히는 법 17
나의장점찾기 나의장점은... 일단보류
-
진지하게 2
지금부터 준비해서 09들이랑 수능으로 뜨면 설의 갈 수 있지.않을까요
-
한 10편 보면 대충 외대 발표시간 돼있겠네
-
38명 뽑는데 표본이 37명밖에 안 들어왔네... 불안하다 너무
-
현장에서 이거보고 좀 당황함
-
운세 2
호오
-
사람이 다 쓴건가
-
고로 대학을다니지않으면 학벌컴플렉스도 생기지않는다
-
ㅇㅇ
-
일단 저는 team05 재수생입니다. 고2때 막연하게 의사라는 꿈을 가졌습니다....
-
인생망했다 0
독학한 반수생이고 간호학과 희망하는데 수능 망했어요 44432 나왔어요 진짜 수능...
-
갠적으로 이미 인설의인 사람이 다시 수능치러가는 거는 이해할 수 읎습니다...
-
어차피 한 과목만 반영할 거 웨 두 과목이나 공부함?
-
학벌 콤플렉스 없으신가요 어케 극복하셨나요 저 시골 지사의 입학할거같은데 학벌정병와서 우울함..
-
감사합니다!! 열심히 다니겠습니다!
-
제발...ㅠㅠ
-
수능 이후로 공부할 열정이 사라짐… 걍 떠야하나
-
유툽봐도 대국민담화랑 뭐 이런것만나오고 정식적으로 왜 그랬는지 입장표명함??? 설마...
-
제 친구가 수시 쓴 곳인데 님들이면 다 붙으면 어디가심?? 아마 낼 발표할텐데
-
진학사 2칸 0
붙는경우가 잇나?
-
몰락 심한가요??
-
시간지나면 정상화되겠지? 일곱밤만 자고 싶다
-
경희대 자연계식 557.24 한약빼곤 다 되는성적인가요? 정디플 봐주시면 정말...
-
동물보면 귀엽다 이런 생각은 하는데 딱히 막 되게 좋아하고 그러진 않아요 이런...
-
전형태 vs 김승리 vs 유대종 vs 강민철 이중에 고민되네요
-
난 분명 순수한 쾌락적 도파민추구만 했던거같은데 갑자기 헬스영상만 ㅈㄴ뜸
-
8시간후에시험개망하고와서 농땡이치는나의모습을상상해봤어요 주말이있으니까상관없겠죠키햐
-
신년운세 2
학업운이 매우 좋음...? 4반수 on
-
그런 의미에서 한캔 더마실까?
-
저 고2 10모기준 낮3인데 선생님이 미적하래서 어쩔 수 없이 미적 했는데...
-
내꿈 6
작은시골마을수의사가되서 집에고양이,강아지여러마리키우면서...
-
vs 골라주세요
-
만약 또 연기하면 걍 정병호 블랙 커리 따라감
-
버스기준이고 자동차론 둘다 똑같음 둘다 과는 내가 원하는곳이고 지방시골살아서 둘다 멀리있음
-
몇시쯤 나는지 궁금합니다
-
보통 4까진 1이랑 똑같이주던데 3까지만 생존인 학교도있음?
-
인하대 합격 발표 몇시야? 제발 합격좀
-
근데 ㅅㅂ 그게 왜 하필 난데
-
중학교때 축구부 친구 수학 가르쳐준 경험 과외 학생 3명 해봤는데 모두 만족했다고...
-
ㅈㄱㄴ
확통이는 스윽...지나갑니다
본질적인 이유는 이번 기회에 제대로 알았습니다만 선생님 근데 합성함수의 미분 꼴에서 g(x)를 T같은 걸로 치환했기 때문에 합성함수 미분 꼴에서 나올 g'(x)가 T'가 되서 1이 되니 사라진다는 건 알겠는데 그렇다면 그냥 g'(x)dx=dt라고 생각해도 큰 지장은 없는 것 아닌가요? 제가 수학 34등급이라 이해를 못한걸수도 있습니다 이해 부탁드립니다
"g'(x)dx=dt라고 생각"이라고 하셨습니다만
이게 오류이기 때문에 '생각'을 안 해야 받아드릴 수 있는 거랄까요?^^;;
적분에 ∫h(x)dx에서 h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
치환적분 처음 배울 때 학생들이 많이 혼란스러워하는 부분이기도 하고
고등학교 수학 범주 내에서 계산상으로도 비효율적이어서
혼란 해소 & 계산 효율 향상을 위해 알려드린 것입니다.
또한 제 경험상
많은 학생들이 이에 대해 고민하고 헤매다가 생각을 접고 그냥 받아드리는데
그 고민하고 헤매는 시간을 없애고
공부에 집중할 수 있도록 해드리는 것이 이 영상의 목적이기도 합니다 ㅎㅎ
(학생에 따라 이걸 상당히 오래 고민 경우도 있어서요)
또한 미분 적분에서 이런 기호 사용에 대해
헷갈릴 수 있는 부분이 정리되어 있어야
dy/dx를 본격적으로 다루는 고난도 문제 풀이도 받아드리기 좋다고 생각해요.
일변수함수에서는 마치 분수처럼 연산이 가능합니다. 우연의 일치이긴하지만 치환적분의 원리만 이해했다면 계산의 편의가 있는 문항의 경우 사용해도 무방하다고 봅니다
지나가던 학생입니다 입시생도아니라 딱히 할말은없는데 dt/dx가 분수는 아닌것은 맞으나 xyz그이상의 다변수함수가 아닌이상 분수처럼 사용해도 큰문제는 없는걸로 아는데 심지어 미분방정식 첫 시작할때 저런식으로 dy/dx쪼개서 넘겨서 쓰기도하구요
애초에 저게 분수가 아닌이유도 원래 분수처럼 라이프니츠가 쓸려다가 dt같은 무한소는 존재하지않는다는게 현대에 와서 밝혀졌고 그래서 분수가 아닌걸로 결론내려진걸로알고있고
xyz이상쓰는 다변수의함수에서는 저런 dy/dx가 벡터개념으로가기때문에 분수로 사용은 불가능한걸로알고
고등학교내에서는 심지어 대학과정에서도 다변수함수가아닌이상
(이부분은 제가 몇년전에 들어서 기억이 안나네요..) 이렇게 dy dx 를 쪼개든 분수처럼 쓰든 크게 써도 상관없는이유가 연쇄법칙쪽과 관련있어서 괜찮다고 알고있는데 굳이 분수아니다 라고 굳이할필요는 없지않을까요?
고등학교에서 라운드기호쓰는 편미분을 할리도만무하구요
맞습니다. 응앵웅웅님처럼 수학 실력이 좋으셔서
분수가 아닌 것도 알고 있고
미분 상황에서 분수처럼 써도 되는 이유까지 알고 있으면
전혀 혼란스러울 것이 없을 것입니다.
그런데 현장에서 학생들을 가르치다보면
이 부분이 납득을 못해서 혼란스러워하는 학생들이 굉장히 많습니다.
d/dx f(x) (=df(x)/dx) 기호 표현에서
d/dx 와 f(x)가 곱해져 있는 것으로 생각하는 경우도 많고
또한 이번 글에서 다루는 것처럼 치환적분할 때
정확한 원리에 대한 이해 없이
g'(x)dx=dt를 이용해서 문제를 풀다보니
이것 자체보다도
∫h(x)dx와 같은 형태에서
h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
그동안 내가 적분 해왔던 건 뭐지?하며 혼란스러워하는 경우도 많이 봐왔고
혼란을 끝내기 위해
이해를 포기하고 대충 받아드리고 나니
dy/dx를 본격적으로 다루는 고난도 문제 풀이도
못 받아드리는 경우도 많이 봐왔습니다.
잘 아는 사람 입장에서는 쉬우니까 적당히 해도 좋을 것처럼 느껴지지만
(저도 대학생때까지는 그리 생각했는데 본격적으로 학생들을 가르치니 입장이 달라지더라고요)
잘 모르는 사람 입장에서는 미적분에 대한 수학적 사고 자체가 막히는 일이 발생해서
고난도 문제 다루기를 어려워하는 걸 보아 안타까운 마음에 얘기하게 되었습니다. :)
저도 chain rlue 생각해서 ㄱㅊ지 않나 싶었는데 선수를 뺐겼네여..
분수가 아닌건 알지만..고등학교 교육과정 내에선 분수로 생각해도 오류는 없다고 배우긴 했습니다