241128(미) 수식 풀이
일단 "모든 양수 t에 대하여 x에 대한 방정식 f(x)=t의
서로 다른 실근의 개수는 2"라는 정보와 "모든 실수 x에 대하여
f(x)>=0"이라는 정보, 그리고 "실수 전체의 집합에서 연속인
함수 f(x)"라는 정보와 x<0에서 주어진 f(x)식으로부터
다음과 같은 상황을 떠올릴 수 있어야 한다.
대충 f(x)의 그래프가 x<0에서는 감소하고 구간 [0, p]에서는 (p>0)
상수함수의 그래프를 보이다가 x>p에서는 증가하는 상황
2015개정교육과정 상 정적분은 닫힌 구간에서
연속인 함수에 대해 논하므로
다음의 두 함수를 정의해주자.
그러면 함수 g(t), h(t)가 정의된 방식에 따라
다음의 두 항등식을 얻을 수 있다.
이를 이용해 닫힌 구간 [p, 7]에서의 적분에
치환을 섞어보자! (치환적분법, 역함수를 이용한 치환)
부분적분법은 두 함수가 곱해진 꼴의 함수를 적분할 때
하나를 미분, 하나를 적분한 새로운 함수를 적분하는 상황으로
적분 상황을 바꾸어주는 방법이다.
x>0에서의 f(x) 식을 아직 알 수 없기 때문에
f(7)값을 직접 구할 수는 없다.
하지만 주어진 관계식 2g(t)+h(t)=k (t>0) 을
활용해보면
x=7과 x=(k-7)/2에서의 함수 f의 함숫값이 일치함을
확인할 수 있으므로 x<0에서의 f(x) 식을 이용하여
f(7)값을 구할 수 있음을 알 수 있다.
이제 주어진 관계식을 이용해주면
구간 [0, f(7)]에서의 함수 p(t)의 적분값만 구해주면
주어진 조건식의 좌변을 정리할 수 있다.
구간을 표기할 때 [-3, 0]처럼 해야지 [0, -3]은 안된다고
알고 있긴 한데 편의상 이 정도는 넘어가자
중간에 d(4x^2)=8xdx는 그냥 내가 쓰는 표현인데
대충 미분(differentiation) 말고 미분(differential)에 관한
생각을 이어와 dy=f'(x)dx 표기를 살려
치환적분법 적용할 때 표기를 단순화하는 방법이다.
어디서 배운 건 아니고 치환적분 문제 풀다가 만들었는데
떠올리기 어려운 것은 아니라 사용하는 다른 분들께서 계실 수도!
이제 조건식의 우변에 위치한 정보를 살리면
k값 후보가 2개 나오는데 아까
h(t)=7일 때 g(t)=(k-7)/2이었고 g(t)<0이므로
k-7<0이다. 따라서 k=5로 확정된다.
답은 2번이다.
+ 아니면 2g(t)+h(t)=k (t>0)로 x>0에서의
f(x) 식을 직접 구할 수도 있는데
2g(t)+h(t)=k 와 f(g(t))=f(h(t))=t 적용하면
각 구간 별 식을 논리적으로 작성해낼 수 있다.
직관적인 상황 파악을 위해 h(t)>0로 표기했지만
f(g(t))=t 에서 g(t)<0이므로 2g(t)+h(t)=k,
h(t)=k-2g(t)에서 h(t)>k임을 바로 확인할 수 있다.
k=5 대입하면 함수 f(x)의 그래프는 다음과 같다.
그럼 바로 f(9)=2x(9-5)xe^(9-5)^2,
f(8)=2x(8-5)xe^(8-5)^2 구해 답 낼 수 있다.
++ 이상입니다, 다만 저는 개인적으로
이것을 대략적으로 생각해내서 t값이 조금 증가할 때
x<0에서 주어진 f(x) 식에 따라 g(t)의 변화를 생각하며
h(t)의 변화를 따라가보는, 그렇게 하여
x>0에서의 f(x) 식을 추론해보는 사고 과정이
현재로서 가장 현장에서 시도해볼 만한 사고 과정이라고
생각하고 있습니다.
읽어주셔서 감사드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
계속 수험판에 남아있는 사람 있나요?
-
이미 가진 성적으로도 시청자 85퍼이상은 딴거같은데
-
미팅은 관심없고 2
커뮤니티 정모는 ㄱㅊ을듯 스몰톡하면 인싸알레르기와서 죽는병에걸림
-
받은지 15분도 안 됐는데 여기까지 먹어버림 스벅 푸드중에 제일 맛있는듯
-
그런거 모르겠고 재수생 삼수생 수능 지박령들 다 죽이고 한번에 대학갈 팀 07 레츠고 ㅋ
-
건동홍 낮과~국숭 높과 성적인 사람보고 유베뽑는다고 뭐라하는 건 재밌긴하네
-
얼마나중요함? 학과가
-
노베 성적표 인증<<클릭해보면 11221 이런거 나온게 한두번이 아니라서
-
이런 것도 보고 싶긴 함뇨
-
이번에는 커리 갑작중단되지는 않겠지?
-
시대인재 물리 0
시대인재 현정훈 선생님 라이브 수업 5주차 자료에 시대인재 기출문제집이 포함돼있던데...
-
이게 가능함? 6
9평->수능 이라는데 국어황 귀신이라도 들어왔나
-
노베가 1년만에 올리긴 쉽지않지 변명을 안통하네 근데물론 안오르진 않을듯 ㅋㅋ
-
현우진 커리 0
보통 시발점 듣고 바로 수분감으로 넘어가는 건가요..? 개념 1번 돌린 수준에서는...
-
분명 작년엔 유베 뽑으라고 울부짖었는데 뽑으니까 이럴 거면 왜 뽑냐니...
-
8시까지 과외인데 2회연속 2시간 늦은 학생때문에 무료 2시간 연장수업중이란거임...
-
물리 과외 받고 싶다는 사람한테 수학 과외 제안서를 보냈네 1
하이고야 쪽팔리다
-
휴 다행이다 헬스터디 남자애한테 현역수능 기준 수학영어만 따였네
-
얘네 둘이 ㅈㄴ 맛있음... 근데 둘 다 단거라 같이 먹으면 좀 과하긴 함
-
ㅋㅋㅋㅋ와
-
결국 6수 해서 붙긴함 근데... 점수가 올라서 붙은게 아니라 교대가 낮아져서 붙음...
-
수학 영어 탐구는 ㄱㅊ아서 인강들으면서 독학중임 참고로 나 관리형 독서실 잇올...
-
동국 경영정보(산공으로 전과 혹은 복전 할 듯) 과기 산업정보시스템 숭실...
-
시즌3 라인업 봤는데 이게 헬스터디 원래 취지가 맞나?... 4,5등급 그 이하의...
-
(사실 안넣어도 망함)
-
저도 닉변추천좀뇨 20
사실 11일이나 남음뇨 하아
-
여자 패패무패승 남자 패패패패무 일년 동안 열심히 해서 역전한다
-
그래도 아직은 하차소식 없던데
-
이영수 기출분석까지 따로 풀필요는 없나요? 해설이랑 맛도리라길래..; 그냥 한명...
-
10대 후반부터 30대 초반까지 수능 공부에만 매몰(치곤 공부 좆도 안하지만 아무튼...
-
빨리 해줘
-
과탐1이랑 비교했을때
-
건대가는 제가 할 말은 아니네요 죄송합니다
-
와..
-
헬스터디 올리고 반응 무조건 보고 있을듯 아님말고
-
이러다 뒤지는거 아닌가 모르겠네
-
나였어도 나랑 성적비슷했는데 어느순간 따이면 열등감 느껴져서 못볼거같아
-
어허
-
아예 최상위권 뽑아다가 수능만점 목표로 공부시키는게 더 재밌었을거같은데ㅠ 노베라...
-
1컷부근은 진짜 가성비goat인데
-
작년엔 침울해서 안봤는데 재밋다 이채연 윤현수 화이팅!!
-
오늘 국어학원 들어갔는데 여긴 안될 것 같다는 느낌 쎄게 받음? 다른 과목 학원은...
-
안보이네 그 양반....
-
가는거 당연한게 아닌데 오르비는 역시 다른가 다들 그냥 간다는 분위기네
-
아. 7
인생 최거 몸무개 갱신함..
-
노베를 살
-
이중전공으로 경제학 선택 생각중이면 1학년 때부터 경제학과 강의 들을 수 있나요?...
-
다들 고우신데 흠
-
10년 넘게 9급 공시에 올인한 노량진 고시낭인 출연 공부 대충 하는 모습에...
-
화2 컨텐츠 2
오늘 베테랑의 개념완성(고성용) 인강 끝남 개념만큼은 완벽하다고 할정도로 복습도...
와! 스텔체스 적분 아시는구나!
맞다 d(f(x))=f'(x)dx 이거 용어가 있었죠!! 잊고 있었네요 감사드립니다 형님
통일~연세~~
예전 23.11.22 수식 풀이 칼럼 정말 도움되었습니다 선생님! :D
도움이 되었다니 다행입니다! 231122 수식 풀이의 경우 제가 발견한 것은 아니고 어떤 의대생 분의 풀이를 보고 공부하다가 '오 이건 더 많은 수험생 분들께서 공부해두시면 좋겠다' 싶어 수식편집기 이용해 정리해보았을 뿐입니다.
수학적 재능이 없다고 스스로를 생각하는 사람으로서 항상 '멍청한 풀이'를 찾길 좋아하는데 231122에서 g(x)를 구하는 것만큼 1차원적인 사고로 답을 낼 수 있는 풀이를 아직 찾지 못했다 생각하여 요새도 심심할 때 식 전개해 구해보곤 하네요 ㅎㅎ
새해 복 많이 받으시기 바랍니다, 올 한 해도 행복한 순간들로 채워가셨으면 좋겠습니다!
+ 마지막에 g(t)값 변화에 따른 h(t)값 변화에 초점을 두어본다는 맥락에서... 현장에서 문항 처음 봤을 때 주어지 관게식 보고 y=-2x (x<0)와 y=x (x>0) 의 그래프를 그려보셨다는 다른 분을 발견했습니다!
확실치 않지만 t값 변화에 따른 g(t)값 변화, 그리고 그에 따른 h(t)값 변화를 살펴보아 x>0에서의 f(x) 개형 혹은 식을 대략적으로 유추래보라는 것이 출제 의도가 아니었을지 싶습니다.
마치 2023학년도 수능 22번이 평균값 정리에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세울 수 있었지만, 그냥 f(x)=x^3+ax^2+bx-3 두고 수식으로 밀어서 g(x) 식을 작성해낼 수 있었듯이
2024학년도 수능 미적분 28번은 항등식에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세워볼 수 있었지만, 그냥 주어진 정적분을 x=h(t)로 치환한 후 2g(t)+h(t)=k 이용, 그리고 다시 g(t)=x로 치환한 후 8x*e^{4x^2}를 치환적분을 통해 계산하여 k값을 결정할 수 있었던...
그러한 비슷한 맥락에서 바라볼 수 있지 않을까 하는 생각이 듭니다!