칼럼) 오비탈 n축 (당신이 화1에서 말렸던 이유) (feat. 좌표평면)
선 좋아요 후 감상
22수능까지의 화1과 23,24수능의 화1의 결정적인 차이는
바로 주양자수, 오비탈이었습니다.
23수능 11번
이 문제 이후로
각종 사설 문제에서 괴랄한 주양자수, 오비탈 문제가 많이 나오기 시작했습니다
특히 n+l+ml=3인 오비탈에 있는 전자수<<<이런 조건들도 나왔고요
이런 문제들이 화1을 극악의 타임어택 과목으로 만들었습니다.
동시에 저런 문제들을 얼마나 잘 넘기는가가
화1에서 주요 이슈가 되었죠.
2,3페이지, 특히 2페이지에서 저런 문제들 때문에 말려서 시험 운영이 꼬인 적, 다 한 번씩은 있으실 겁니다.
저도 그랬고요.
그래서 '이런 유형의 문제들을 쉽게 해결할 수 있는 방법은 없을까?'라는 고민을 계속 했습니다.
첫 번째 방법은 반복해서 나오는 조건들을 외우는 거였습니다.
하지만, 낯선 조건이 하나라도 나오면,
"어 이거 외운 거에 없는 건데?"라고 당황하면서 오히려 더 말렸죠.
결국, 키는 '누가 머릿속에서 바로바로 조건에 맞는 결과를 떠올리느냐'인데,
이걸 누가 모를까요...
그게 됐으면 진작 됐겠지...
그럼에도, 어떻게든 방법을 찾아야 했습니다.
그래서, 생각해 낸 게,
1. 조건에 맞는
2. 그런데 일반화된
3. 시각적인 생각의 틀
을 만드는 것이었습니다.
생각해보면,
합성함수에서 많이 쓰는 스킬인 n축,
윤도영 선생님의 matrix
모두 일반화된 틀을 요구하죠
그리고 저 두 스킬은 정말 유용하고요.
시각화의 관점에서는 타의 추종을 불허하는 스킬들입니다.
그래서 이런 생각을 해봤습니다.
일단, 주로 나오는 조건이 n하고 l이니까, 둘을 변수로 하면서 시각화하는 방법은 없을까?
저희가 가장 많은 쓰는 틀이 있죠.
"좌표평면"
n을 x축으로 두고, l을 y축으로 두면 어떨까?
일단 1s부터 3p까지의 오비탈을 좌표평면에 모두 표시해보았습니다.
자 여기에 n+l이라는 조건을 적용하려면?
n+l=k 꼴의 직선을 표시하면 되겠죠.
n+l=1,2,3,4를 표시하면 다음과 같습니다.
n-l의 경우는, 기울기가 1인 직선을 표시하면 되겠죠.
이러면 n+l, n-l값을 일일이 외우지 않아도 손쉽게 머릿속에서 떠올릴 수 있겠네요
자, 이제 ml이 문제입니다.
3차원으로 구현하는 건 오히려 머릿속으로 떠올리기 힘들기 때문에 전혀 실용성이 없죠.
그래서 그냥 2차원 좌표평면에다가 우리가 아는 오비탈 전자배치를 넣었더니, 훨씬 더 낫더군요.
좀 더 시각화해보면, 다음과 같이 나옵니다.
ml값을 색깔로 구분하면 다음과 같습니다.
별거 아닌 것처럼 보이지만,
저는 ml=0인 거 계산할 때 무의식적으로 s 오비탈을 빼먹는 경향이 있었어서...
시각화해서 나타내더니 좀 나아지더라고요
l+ml을 정리해볼까요? y좌표에다가 ml값만 차례로 더하면 되겠네요.
l-ml은 y좌표에다가 ml값을 빼면 되겠고요.
n-l+ml=2에 해당하는 오비탈을 한 번 찾아보겠습니다.
n-l=1, n-l=2를 먼저 찾고,
n-l=1에서는 ml이 1이어야 하니까 이 직선을 오른쪽으로 한 칸 옮기면 되고,
n-l=2에서는 ml이 0이어야 하니까 직선을 그대로 놓으면 되겠네요.
n-l=3에서는 ml이 0인 곳만 존재하므로 찾을 필요가 없고요.
그러면 이렇게 나오겠네요.
뭔가 이 과정이 번거롭다는 생각이 드실 수도 있는데,
이거 그냥 직선 쓱싹쓱싹해서 조금만 이동시키면 바로 시각화가 되니까 시간을 줄일 수 있겠죠.
실전에서는 좌표평면을 일일이 그리기가 너무 번거로우니까,
다음과 같이 약식으로 나타내는 게 좋겠네요.
저는 수능에서 이 스킬을 쓸 때, 그냥 저거 하나만 그리고 머릿속에서 계산해서
오비탈 문제를 풀 수 있었던 거 같습니다.
자 이제 이걸 이용해서 9모 7번 문제를 풀어보겠습니다.
1) n+l부분에서 기울기 -1인 직선 3개 그으면
1과 2인 부분은 하나만 나오니까 나:2s, 다:1s인 건 알 수 있을 거고요
2) 두 번째 조건에 의해서 가: 2p(-1),
3) 세 번째 조건에서 l+ml이 (라)가 가장 크다고 했으니 y좌표 값이 더 크면 되겠네요.
(라)도 확정이 됩니다.
6모 15번 문제도 풀어보죠.
두 번째 조건을 정리하면 (나), (라), (다)의 x좌표 대소관계를 정리할 수 있겠네요.
첫 번째 조건에서 (나)는 아무리 커봐야 2라는 것도 알 수 있고요.
x좌표에서 (나)>(다)이므로 (나)가 2s, (다)가 1s임을 알 수 있습니다.
(라)의 ml값이 (나)보다 크니까 1,
세 번째 조건에 의해서 (가)의 ml값이 -1이므로 정리하면 다음과 같습니다.
자, 이제 마지막 수능 문제입니다.
1번 조건) n-l은 (가)>(나)이다.
일단 n-l은 1이랑 2밖에 없으니 (가)는 2s임을 확정지을 수 있겠네요.
2번 조건) l-ml은 (다)>(나)=(라)이다.
l-ml값은 y좌표에서 ml 값 차례로 빼면 되니까 다음과 같이 표시하면,
두 번 이상 나오는 값이 0밖에 없으니 나와 라의 후보를 좁힐 수 있겠네요.
3번 조건)(n+l+ml/n)은 (라)>(나)=(다)이다.
이제 세 번째 조건은, 주어진 식을 1+(l+ml/n)으로 변형할 수 있고,
l+ml/n값이 동일한 경우가 0밖에 없으니까 l+ml값이 0인 것 중에 (나)와 (다)가 있다고 하면 되겠네요.
주어진 것을 모두 정리하면 다음과 같습니다.
글로 일일이 설명하느라 복잡해보일 수 있습니다.
하지만, 간결한 시각화라는 특성에 주목하면, 그 효과는 결코 적지 않습니다.
(그냥 그림만 그려서 직접 정리하면 느끼실 거에요.)
제가 며칠 전에 과탐 시험지 운영에서 어려웠던 점이 무엇이었는지 제 글에서 물어본 적이 있었습니다.
근데, 정말 공감이 되는 댓글이 하나 있더라고요.
오비탈이 안 보이면 한없이 안 보인다....정말 공감되는 말입니다.
그냥 머릿속으로 때려맞추는 게 더 빠를 때도, 가끔은 있을 겁니다.
근데, '시각화된 틀'을 사용한다면, 한없이 안 보이는 현상은 거의 막을 수 있지 않을까요?
실제로 저는 6모 양자수 문제에서 한없이 안 보이는 현상을 겪었습니다.
그때는 이 스킬을 만들지 않았을 때였으니까요.
하지만, 수능에서는 한 번도 막히지 않고, 바로 해결할 수 있었습니다.
제 수능 화1 1등급은 이 스킬이 아니었다면, 불가능했을지 모른다고 해도 과언이 아닐 겁니다.
화1을 시작하시려는 분들,
이 스킬, 잘만 단련시킨다면, 적어도 후회는 절대 안 하실 거라고 장담할 수 있습니다.
다음 칼럼은
'나는 어떻게 이러한 스킬을 체화하였는가'로 찾아뵙겠습니다.
감사합니다.
0 XDK (+1,000)
-
1,000
-
치피치피단 입성 2
성대합격으로 성공
-
기억에 남지 않는다 우리는 고급수학 수업 때 입실론 델타 입실론 엔하고 심지어 수2...
-
처음 알앗어
-
무한 고민
-
인기가 너무 많은 지역이다
-
얼음
-
음주하는중 1
헤헤
-
입실론 델타법 말고 10
라그랑주 승수법도 꽤 다양한 곳에서 쓰이는듯...
-
학교 3일 가는거 빼면 59일이긴한데 학교에서 알빠노하고 공부하면 되서 상관없음...
-
나도하고싶다
-
점수공개 보니까 추합 끝자락이거나 불합일 것 같네요 이미 재수했고 이제는 대학...
-
최근 4개년 평가원 기출을 분석하여 최대한 평가원 그림과 똑같아 보이도록...
-
와 나 다시 살아났다 13
3주 만에 식욕이랑 성욕 돌아옴 휴 곧 죽는 줄 알았잖아
-
걍 성대 다닐까라는 충동이 잠깐 밀려왔음....
-
3떨 0
점공까니까 가능성있는데 발표전까지 공부해야될까요..
-
싼 곳으로..
-
님들 몇살임요? 12
다들 몇살임??
-
중강경외시 5
음?
-
수학 6등급 재종반다니는데 국영수업이랑 수업습관까진괜춘은데 수학이좀별로라 그시간에...
-
입실론델타 나도 배워야 하는걸꺼같은 한숨나오는 예감이
-
도다인테 우와이?
-
이거 뭐임....??? 17
왜 맨날 리즈 갱신함...???
-
나머지는 허수들인가요? 아님 그녕 귀찮아서 점공 안하는 실수?
-
근데 그게 뭐임?
-
화학2 단과 0
강준호쌤 대기순번 30번인데 가망있나요
-
저는 이제 개념 60%정도 돌렸습니다!! 기말 끝나자마자 12월 중순부터 시작했고...
-
ㄹㅇ좆같네 ㅋㅋㅋ
-
현기증 나는 활주로의 최후의 절정에서 흰나비는 돌진의 방향을 잊어버리고 피 묻은...
-
저 무협지 좋아하는데 이거 실제로 되는 기술임??
-
앱실론델타논법 35
공머생들 해두면 좋음 지금 첨에 컬쳐쇼크임
-
친해져요 그러니까 친해지다 = 맞팔
-
어차피 선택에는 후회가 따를 수밖에 없고 태고의 옛적 통합사회 교과서도 비용과...
-
전 편 -...
-
작년보다 추합이 많이 덜 돌거같아서 그게 걱정임 하………
-
현실에 삼수 많음? 12
서울대는 꽤될거고 연고나 서성한도 삼수생 많은가요? 2떨하면 삼반수할거같은데 내가...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
친구 중에 세종대 23학번 있음 ㅅㅂ.............. 나재수할때그친구가...
-
컨디션 슬슬 돌아온다
-
보통 인강 강사들이 많은 기출강의들을 올리시는데 그런 강의 듣고 교재만 풀어도...
-
전 수능 이후론 엄마가 항상 퇴근하고 국에다 반찬이랑 해서 차려주심
-
내신 망한 건 아니고 챙길 건데 가고 싶은 과가 정시 위주라 조언 좀 지금 국어는...
-
2025 전과목 2024 전과목 2023 전과목 이런식으로 된 문제집은 따로 안파나??
-
잇올에서 연애 6
친구가 잇올에서 여친 99퍼 확률로 사귈 것 같다는데 가능하긴 한 건가요?? 말...
-
아무래도 좀 늦게 보내서
-
있나요?
-
Another class 화학 II 2026 출시 예정 7
안녕하세요. Another class 화학 II 저자 이병진입니다. 먼저 그동안...
-
고경제쓸걸 1
651점까지 뚫린다네...
-
다들 인증 하나요?
-
∃원인 : 어떤 원인이 존재한다 ∀결과 : 모든 결과에 대해 ∀원인 : 모든 원인에...
-
안되는데
지나가겠습니다
전자 수 분수조건 같은 경우도 이 틀을 이용하면 쉽게 풀 수 있습니다.
직접적으로 도움은 안 되지만, '일정한 틀'이 있다는 것만으로 훨씬 더 안정적이고 효율적인 풀이가 가능할 겁니다.
만약
합성함수 N축인줄 알았으면 7ㅐ추 ㅋㅋ
그래도 감사합니다
오랜만에 보네여
그냥 화1 이렇게까지 몸비틀면서 할시간에
생지하고 대학가는게 맞는듯 합니다 ㅋㅋ
지구를 내신으로 안 했어서...ㅋㅋ
이런거볼때마다 화학 재밌어보임
어렵긴한데 ㅋㅋㅋㅋㅋ 하면안되겠지
하면 꿀이에요
화학 유기중인데 다시 시작할때 참고할게여
수능 화학은 대체 어떤 과목일까요…
GOAT
오비탈에 n축...? 파급효과 미쳤다
오비탈에서 막혔었으면 화1 계속 했을텐데..
시각화 좋네요 땡큐
ㄷㄷ 귀하신 분이 누추한 곳에...
와 필수이론에서 괜히 그래프 여러번 그려보라한게 아니구나..
ㅋㅋ..
안녕하세요 이거 보고 내년 지학으로 바꿨습니다
지나가던 물지러입니다. 계속 지나갈게요~
작년에 뜨길 잘했지 이게 뭔 고생이냐~
화1은 할게 못됨.. 타임어택 진짜 벽 느낌
저런 문제를 왜 만드는걸까,,,
화1 문제보고 투투하기로 했다
어우,,, 진짜 이런문제를 왜만들까,,,
이거보고 지학하기로 결심했습니다..
물지입니다
대가리박고 지나가겠습니다
늦게나마 봤는데 글 감사합니다 연습해볼게요