우주론 강의 1. 우주론의 기본원리&허블 법칙의 유도
음... 시간이 남을 때 우주론에 대한 강의를 좀 써보려고 합니다.
좀 어려울 건데요. 관심있는 학생들도 있지 않을까 해서 써봅니다(반응이 별로면 그만둘지도... ㅎ).
수식은 한글에서 써서 캡쳐한 뒤에 붙였는데(여기 수식 문법에 익숙하지 않아서) 자동으로 크기를 맞추려고 하는건지 크기가 제각각이네요. 음... 별로네요... 아무튼 시작합니다.
1. 등방성과 균질성
우주론의 기본원리는 등방성과 균질성이다. 등방성이란 관측자가 어느 방향을 관측하건 같은 모양을 관측한다는 것이다. 균질성은 밀도가 균질함을 의미한다.
우리가 밤하늘의 별을 보면, 이것이 성립하지 않는 것처럼 보인다. 좁은 영역에서는 등방성과 균질성이 성립하지 않는 것처럼 보인다는 것이다. 그러나 큰 범위에서는 얼추 성립하는 것처럼 보이게 된다.
그림은 기본 천문학(구판 p.457)에서 가져왔다. 좁은 원에는 은하가 2개 있고, 중심에서 이 원 내부만 관측한다면 등방성과 균질성이 성립하지 않는 것처럼 보인다. 그러나 조금 더 큰 원 내부까지 관측한다면 이제는 얼추 등방성과 균질성이 성립하는 것처럼 보인다. 이처럼 우주는 큰 영역에서 등방성과 균질성이 성립하는 것처럼 보이고, 우주론에서는 이를 기본 원리로 가정한다.
2. 로버트슨-워커 계량
직교 좌표계에서 시공간 거리는 다음으로 정의된다.
이때 는 고유거리를 나타내는 부분이다. 고유거리는 우리가 일반적으로 생각하는 어떤 한순간 공간상의 두 점 사이 거리이다.
만약 우주가 등방성과 균질성을 만족한다면, 고유거리 부분을 바꿔서 시공간 거리를 다음으로 나타낼 수 있다(유도는 하지 않는다.).
여기서 a(t)는 척도인자라고 하며, 우주의 상대적 크기를 의미한다. 정확한 우주의 크기를 알 수 없으므로, 현재 우주의 크기를 1이라고 하고, 어느 시점에서 우주의 크기를 현재 우주의 크기와 비교한 값이다. 상대적 크기이므로 무차원이다.
이 식에서 거리를 나타내는 부분을 다음으로 쓰자.
d_p는 고유거리이다. X는 공변거리이다. 이 값은 지금 현재 어떤 점이 나로부터 떨어진 거리이며, 변하지 않는다.
예를 들면, 지금 어떤 은하 A가 나로부터 떨어진 거리가 1Gpc이라고 하자. 이 은하는 공간상에서 운동하지 않는다고 가정하자. 현재 척도 인자는 정의에 의해 1이므로 X=1Gpc을 얻는다. 이제 먼 미래에 우주의 크기가 지금의 2배가 되었다고 하자(즉, a=2). 그러면 은하 A의 고유 거리는 2배가 되어 d_p=2Gpc이 될 것이다. 그러면 X는 여전히 1Gpc임을 확인할 수 있다. 이처럼 어떤 점까지의 공변거리는 우주가 커진다고 해서 값이 변하지 않는다.
또, 위 식을 보면 X가 일정하므로 r, theta, phi 또한 일정해야 할 것이다. theta, phi는 적경, 적위와 같은 개념이라고 생각하면 된다. r은 공변좌표로, 이 값 또한 일정하며 우주론에서 다양한 거리를 정의함에 있어 자주 보게 될 것이다.
3. 허블 법칙의 유도
자, 이제 고유거리를 시간에 대해 미분해보자. 그러면 이것은 어떤 점이 나로부터 이동하는 속도를 나타내게 된다.
X는 시간에 대해 상수이므로 시간에 대해 미분할 경우 0이 되므로 위와 같이 될 것이다.
이제
로 정의하면, 식은 보다 간단해진다.
이 H(t)는 어느 순간 t에서 우주의 모든 공간에서 같은 값을 가진다. 이것을 허블 상수라고 한다. 그러니까 어떤 공간상의 점이 나로부터 멀어지는 속도는 허블 상수와 고유 거리의 곱으로 주어지게 된다.
유도 과정에서 우리가 가정한 것은 로버트슨-워커 계량 뿐이다. 그러므로 우주에서 로버트슨-워커 계량이 성립할 경우에 허블 법칙이 성립한다. 즉, 우주가 등방성과 균질성을 만족한다면(그리고 상대성 이론이 옳다면) 우주에서 허블 법칙이 성립한다.
그러니까 우리가 다루는 모든 우주 모형에서 허블 법칙이 성립한다.
단, 이때 허블 법칙은 공간상의 점이 멀어지는 속도는 고유거리에 비례한다는 것이다. 만약 허블 법칙을 적색편이와 광도 거리(거리-지수 공식으로 구해지는 거리) 간의 비례 관계라고 한다면, 적색편이가 1보다 매우 작은 범위에서만 성립한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건 걍 키보드바꿔야함?하는겜 롤이라 q젤 많이씁니다 으 다른데 돈쓸데도 많은데 하필 ㅋㅋ
-
학교도서관에서 2
고1수학공부하기
-
공통 1틀인데 표점 140 가능?
-
어디갈수잇지
-
내 범고래가!!
-
저는 한 달 뒤 1월 1일이 되면 옯갇님이 돌아오실 거라고 믿어요 6
그러합니다...
-
저는 남붕이같나요? 33
남붕이처럼보일려고 노력많이했었는데
-
사실저도여붕이임 5
네
-
심연이다...
-
저도 사실... 2
https://orbi.kr/00070189292/여기-합격-뱃지-달고-있는-옯비언-...
-
메인 처음가봄 2
신기하군
-
언매 92(공통-8) 1가능성 잇을까요..? 원래 메가 빼고 대성 진학 ebs 부산...
-
숙대 맛집 추천 0
중식당 여기 한번 가봐라 존나맛있다
-
패딩입었는데도 덜덜 떨림
-
저번에 몇화까지봤는지 기억이안남
-
방송 on
-
수능 수학 범위 내에서 불호가 가장 높은 과목은 수1일 수밖에 없는 듯 수2,...
-
??
-
딸 수 있음?
-
겨울 느낌 노래 8
좋아요
-
망해가는 수능판에서 수능 커뮤인 오르비를 살릴 수 있을까? 망령분들 말 들어보면...
-
부산대의대 근황 0
어차피 혈액종양은 돈도 안되고 하는데만 하는 분야라서 말이지 오죽하면 몇몇의대는...
-
얘가 오늘 생일이에여 그래서 생일 축하문자 보낼려고 했는데 얘가 200일 된 남친이...
-
채수빈이 진짜 10
남자들한테 호불호 잘 안갈리는 미녀아닌가
-
이전 글 : https://orbi.kr/00070005760 위 링크로 가시면...
-
근데 컵 들고 마실 때 새끼손가락 이거 왜 이러는 거임 12
이러는 사람 되게 많더라
-
2등급은 나오겠지......? 나 대학 가야되요 시발
-
아 저격마렵다 6
킼
-
영어4면 어디써야하지..
-
김밥천국에서 돈까스먹고있는데, 입구에서 되게 젊었을때 존예였을꺼같은 30대유부녀랑...
-
귤 맛있다 4
귤이 맛있다면 귤은 비싸다
-
저 고백할거 있어요 11
저사실오르비언분들 다사랑해요
-
기자회견 민지 8
곱다 고와
-
진짜 불안해서 그런데 생명 원점수 37이고 표점60입니다(메가기준) 3가능성...
-
어차피 복전 무한으로 즐길 수 있으니까 인문 자전이 나중에 문과밖에 못 골라도...
-
올해는 이런 말까지 나올 정도의 처참한 컷이 나오지 않았으면 좋겠네요 현역때...
-
ㅇㅈ2트 0
캬 이게색스지
-
화작 컷 96인거 보고 생각고쳐먹음 라기엔 언매93도 2일거같은 느낌인데
-
ㄹㅇ................
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 1
논리싫증주의자는 관심이 없다
-
ㅇㅈ 4
캬
-
확통 등급; 6
공통1틀 96점 2등급이 나올수있는게 사실인가요..?
-
그냥 연경제 가겠단 마인드로 설경 지균 스나하는건 너무 도박인가 서울대 지균...
-
처음배울때 뭐가 더 어렵나요?
-
전자 vs 전기 9
이거도 부탁할게요
-
생윤) 허수가 4개 틀린 과정+재수 시 유지가 맞는 선택인가 0
발단) 10모 1뜨고 안심해서 사문 위주로 함 전개) 힘빠졌는지...
-
진지하게 96가면 23급 억까임 ㄹㅇ
-
음
-
십덕의 오노추 1
내청코 3기 op 싹틈의 꽃
개추
헐 ㅏ 너무 기대되요 잘 읽을게요 ! 감삼다