합성방정식
수능 수학을 공부하다보면, 평가원 기출 문항을 분석하다보면 방정식은 방정식인데 합성함수가 얼핏 보이는 상황을 종종 마주하실 수 있으실 거예요!
예를 들어 2022학년도 6월 22번의 경우 다음과 받은 합성방정식이 제시되었습니다.
이 방정식의 의미는 방정식 f(x)=0 을 만족하는 실근들에 대해 각각을 편의상 1, 2, 3, 4라고 한다면 방정식 x-f(x)=1 or x-f(x)=2 or x-f(x)=3 or x-f(x)=4 의 해를 구하라는 것입니다.
0을 다른 거로 살짝 바꾸면 문제가 상당히 어려워질 것임을 확인하실 수 있으시겠습니다.
혹시나 수능에서 이러한 형태의 방정식을 볼 날이 온다면 f(x)가 간단한 함수가 아닌 한 가슴이 아찔해지죠?
비슷한 맥락입니다. '과도하게 복잡한 상황은 다루지 않는다'는 한국교육과정평가원의 매뉴얼에 따라 이 정도로 복잡한 형태의 방정식을 마주칠 확률은 작겠지만 뭐든 모래 주머니 효과를 받기 위해 훈련해두어 나쁠 것은 없으니까요 ㅎㅎ
2018학년도 수능 나형 21번입니다. 다음의 합성 방정식을 다루고 있습니다.
왠지 이 형태를 직접적으로 제시하면 학생들이 겁 먹을까봐 좌변의 함수를 g(x)로 제시한 후 g(x)=f(x)라는 완곡한 표현을 쓴 게 아닌가 싶은 생각도 듭니다.
방정식의 해석은 생각보다 단순합니다. 우리는 수학(상)에서 '뭔가 복잡한 상황을 맞이하면 치환해라'라는 것을 학습할 수 있었습니다. 따라서 f(x)=t로 치환하면 방정식 f(t)=t를 바라보는 상황임을 알 수 있습니다. 그래프로 해석하면 함수 y=f(x)의 그래프와 함수 y=x의 그래프를 그린 후 두 그래프의 교점의 x좌표가 바로 방정식을 만족하는 t값이 될 것임을 확인하실 수 있습니다.
그리고 마찬가지로 방정식 f(t)=t를 만족하는 실근 t들을 각각 편의상 1, 2, 3, 4라고 한다면 방정식 f(x)=1 or f(x)=2 or f(x)=3 or f(x)=4를 만족하는 서로 다른 실근이 주어진 방정식이 요구하는 실근들이 되겠습니다.
본 문제의 답까지도 한 번 내보세요! 합성 방정식에 대한 본질적인 이해도를 높이는 데에 도움이 될 것이라 생각합니다.
2019학년도 9월 나형 30번입니다. 다음의 방정식을 묻고 있습니다.
처음 봤을 때는 한 2주 정도 천천히 고민해보는 것이 의미 있다고 생각하지만, 지금은 글을 쓰는 중이니 바로 의미를 작성해두겠습니다.
우선 첫 번째로 의미하는 것은 f(x)=x 입니다. f(x)=x이면 당연히 f(f(x))=x 도 성립할 것임을 확인하실 수 있습니다.
두 번째는 f(x)=/=x 일 때인데, f(a)=b라고 해봅시다. 이때 f(a)=b면 f(f(a))가 f(b)가 됩니다. 그런데 f(a)=b일 때 주어진 방정식을 만족하려면 f(f(a))=a가 되어야하므로 f(b)=a가 되어야 함을 확인하실 수 있습니다.
따라서 f(a)=b이고 f(b)=a라는 한 쌍의 정보가 주어진 방정식을 만족하는 상황, 두 번째 의미가 됩니다.
실제 문제 상황에서는 f(0)=0, f(1)=2, f(2)=1, f(a)=a, f(b)=b를 만족하는 상황이 되어 함수 y=f(x)의 그래프와 y=x의 그래프의 교점의 x좌표가 0, a, b가 되고 함수 y=f(x)의 그래프와 함수 y=-x+3의 그래프의 교점의 x좌표가 1, 2가 됩니다.
대부분의 합성함수 개형 추론이라 불리는 유형의 문항들도 사실 합성방정식으로 대부분 해석되는 경우가 많습니다.
대표적으로 2019학년도 9월 가형 30번이 있습니다. 복잡해보이지만 (가)와 (다)를 합성방정식으로 처리해버리고 (나)에서만 합성함수 미분법을 들고 와주시면 충분합니다.
2019학년도 수능 가형 30번은 합성방정식으로만 접근하기에는 무리가 있습니다. 수학(하)의 합성함수 파트에서 속함수의 움직임을 따라 겉함수를 해석하는 방식을 배워와 그를 따라 문제를 접근하는 것이 편하다고 느꼈습니다. 복잡한 문제이지만 f(alpha_2)가 -pi/2를 넘기냐 넘기지 않느냐로 경우를 구분하면 한 쪽에서 모순이 발생해 편하게 답을 내실 수 있습니다.
물론 시작하자마자 'f(alpha_2)와 -pi/2를 비교하자'라고 생각이 들면 그건 천재인 것을 넘어 답지 본 사람이고요.. 하나씩 예시를 들어보고 상황을 단정지어보며 마치 귀류법에 따라 주어진 명제를 증명하듯이 하나씩 살펴보아가시면 충분하겠습니다.
수능 수학을 공부할 때는 깔끔하거나 화려한 풀이를 공부하는 것도 도움이 되지만, 웬만해선 시험 현장에서 내가 구사할 수 있는 기본적이면서도 단순한 풀이를 추구하시는 것이 좋다고 생각합니다. 저 또한 이 믿음 덕분에 인강이나 인강 컨텐츠 없이 2022학년도 수능에서 미적분 100점을 받아냈다고 생각합니다. 물론 시험 현장에서 예상했듯 만점자가 너무 많아서 멋이 덜해지긴 했다만... 더 어려운 시험이었다면 100점을 받아내었을 자신은 솔직히 없습니다 ㅋㅋ
전형적인 합성함수 개형 추론 문항, 2023학년도 수능 미적분 30번입니다. (가) 조건에서만 합성함수 미분법 넣어주고 (나) 조건은 합성방정식으로 해석해주시면 됩니다. 다만 0<x<3에서 1/2<f(x)<?임을 잡았을 때 방정식 sin(pi*f(x))=ln2를 만족하는 f(x)값이 7개가 되도록 하는 것이 상황의 핵심이기 때문에 기존의 맛과는 살짝 다르긴 합니다.
2022학년도 9월 미적분 29번도 전형적인 합성함수, 합성방정식 문항입니다. 위 문제들과 함께 살펴보시면 학습에 도움이 될 것이라 생각합니다.
그럼 8월 한 달도 다들 파이팅입니다!! 9월에 어떤 식으로 문제가 출제되는지 살펴보고 경향 참고해 수능 대비 잘 마무리합시다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제곧네 인문융합학부는 인하대 문과대학 자유전공임 한국어문학과, 사학과, 철학과,...
-
리젠 좀 올려 7
다 빠져가지고..
-
T1아 나를 또 속이는거니
-
아 아 돌이킬 수 없을 정도로 쌓여버렸어
-
무테로 돌아가고시프다 10
다시시작?
-
저 전 과외쌤은 그렇게 가르치셨는데 이거 좀 유명한 수법인가요
-
입결이 다가 아닌것같아요
-
동기들이랑 사전에(만나기전에) 인스타 쌓고 맞팔을 어케함뇨 이름을 바로 외우긴 좀...
-
Goat
-
올해 88점이고 미적 2틀인데 1컷 실력에서 상방 뚫는 효과 보려하는데 강기원...
-
종로학원 창업주 아들이 이 분이라는 것은 알고 계셨나요? 2
정태영 현대카드 부회장정의선 현대자동차그룹 회장의 매형이 되죠(정 회장의 둘째...
-
시대인재 질문 2
시대인재 단과는 상위권만 들을수 있음뇨?
-
경외시랑 동홍이랑 차이 꽤 크나요?
-
ㅈ팔륙 기성세대들을 너무 얕잡아보는거 아님?
-
키 180 이상얼굴 훈훈하고 선 굵고옷 잘입고 피부 깨끗하고 몸은 어개만 좀 넓으면...
-
사람 찾아줄려다가 그담날 여행 갔을 때 써버림
-
10덕분들 컴온 10
어디서 그렇게 많은 짤을 찾으시나요
-
고3 킬러 풀어보라 시키면 안되겠죠? 대충 테스트지 만들어갈 생각인데 구성이 좀...
-
내 어이 어디감 5
없어졋네
-
꽤 많이 쓰는거같음뇨
-
닥 전자임?
-
근데 난 고등학교 교사들 좋은사람도 많다고생각하는게 7
내가 고2 고3 정시파이터였는데도 쌤들이랑 크게 안다퉜음 쌤들도 내 내신 ㅈ된거...
-
인강듣기 싫고 피램처럼 day별로 나눠진 자습서 없나요?
-
안녕 여러분 저는 사랑과평화우정이라고 해요 오늘은 에타를 유용하게 쓰는 방법에 대해...
-
오늘도 비주얼을 정상화하네
-
담주 화요일로 잡아놨는데 두달 공부 안 하니까 지문이 안 읽힌다…영어 작년이랑 올해...
-
선관위랑도 엮여있네
-
다른 학교 보면 수위가 상상을 초월한다던데 내 전적대(예정)는 그냥 고민상담이나...
-
차단한 회원의 글입니다.
-
누구로 살래 키 185 흔남 vs 키 160 존잘 26
어그로 ㅈㅅ 국어 1문제 틀림 수학 1컷 영어 만점 생명 원점수 45 사문 만점...
-
군휴학하면 2
다음학기 등록금내고 휴학하는거임?
-
확통 기하 중에 고민 중인데 걍 닥치고 확통 할까요 ? 기하도 딱히 거부감은 없어서...
-
이런
-
어디감?
-
골라주셈여… 10
경희대 정디플이랑 이대 인공지능 중에
-
아니 애가 나눗셈도 이해를 못하는데...
-
주식 역대급 손익 인증 25
수수료 다 떼고 0원은 어케 한거임 대체??
-
자꾸 궁금해서 풀어보고 싶어짐 근데 한번 풀어보고 그 댓이 차단당할 만한 댓인 걸...
-
제가 2월 중후반쯤에 시대라이브 수강을 할거같은데 1주차부터 신청하기 전주까지의...
-
현역때까지는 인강쇼핑하고 강의 안들으면 불안하기도 하고 공부 못할거같는 느낌이었는데...
-
그만 알아보자..
-
국어 기출 6
현재 독서 비독원 듣고 있는데 좀 안 맞는 것 같아서 김동욱쌤 들으려고 합니다....
-
춥다
-
제가 대충 환산식 찾아봤을 때는 BB와 CC 차이가 3점이고, 머리ㅡ꼬리 차이가...
-
알아서 받으시면 됨. 나인거 바로 알거임
-
지금 당장 글댓 밀고 싶은 것만 밀고 계정 삭제해야 함뇨 그게 아니면 절대...
-
첨단융합-399.40(54등) 항공우주-396.50(12등)...
-
나중에 암살당하는 건가
-
다 그놈이 그놈임
항상 감사합니다.
학습에 도움이 될 수 있다면 다행입니다!
f(x)=/=x은 무엇인가요??
f(x)가 x와 일치하지 않는다는 의미입니다, 등호에 작대기 하나 그은 부등호를 의미하고자 했습니다. 아마 공식 표기는 아닐테고 제 편의상 적었습니다!
아하 그렇군요 감사합니다
근데 우변이 0이 아니라 다른 함수여도 계산상의 문제 빼고는 별로 차이 안 나지 않나요? 특히 x인 경우는 특수해서 겉함수는 f(x)=x, 속함수는 f(x)=x+t 꼴 만족하는 게 실근이라 하나의 좌표평면에 그리기 쉬워져서 더 쉬울 거 같아요
f(x-f(x))=x 이면 f(x)=x로 이해할 수 없습니다. 예를 들어 x=1이 방정식을 만족할 때 f(1-f(1))=1에서 1-f(1)=1이므로 f(1)=2라고 단정지을 수 없습니다. 만약 f(1)=-2이고 f(3)=1이라 해도 x=1은 방정식 f(x-f(x))=x의 해가 됩니다. 만약 주어진 방정식이 f(f(x))=f(x)와 같았다면 겉함수를 f(x)=x로 볼 수 있었을 것입니다.
따라서 계산상의 문제도 문제이지만 본질적으로 다른 문제가 되어버린다고 생각합니다. 특히 f가 다항함수가 아니라면 더욱 그러할 것입니다. 이는 오히려 함수 f(x-f(x))의 그래프를 직접 그려서 우변의 함수의 그래프와의 교점을 비교하는 것이 합성방정식으로의 해석을 시도하는 것보다 편할 수도 있겠다는 생각도 듭니다!
아 그러네요 순간 착각했어요... 감사합니다!