나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
물리 vs 생명 0
작년에 물리 역학 개념하다가 생명으로 틀었는데 이번 수능 생명 역대급으로 개처망해서...
-
9평까지 2였는데 수능때 25점(5) 나옴 옆에서 엄마가 물2 풀었니? 라 하심... 이게 22수능
-
칸수가 표본보다 중요합니다.. 속여서 안 죄송 ㅅㄱ
-
ㅅㅂ 이런학교가 어떻게 입결이 여기까지 올라왔지? ㄹㅇ 인서울 맨하위여도 납득인데...
-
수능 영어 2 정도면 가서 도태당하나요? 거기서 학점 살아남는 법 아시는 분
-
원전공: 문돌이 해야하는 노력: 영어 1등급 받아야 함, 국어 3뜨면 안됨, 사탐...
-
둘 다 장수생임 얘가 n수때매 우리의 경우 정신연령이 또래보다 낮은게 아닌가 라는...
-
듀얼모니터 만들어서 티비로 인강 들으려고 했는데 그냥 듀얼모니터로 창 두 개 켜놓고...
-
점공 14명밖에안들어왔어요 55명지원인데 ;; 이거 허수들 많다고 생각해도 되는걸까요?
-
ㄹㅇ 서강이고 뭐고 그대로 시립대 건대행일뻔 ㄷㄷ 하늘이 살렸다
-
원래 대학 잘 가면 과외 할 때 쓰려한 한 것들인데 불의의 사고가 있었.. 그냥 다...
-
커로메타네 9
백분위 84 71 3 63 74 문제는 전부 이 새끼들이 수능에서 나옴
-
언제 죽을지도 모르는 거 제동장치 고장난 열차처럼 달릴까
-
심지어 고2때 화학1 지구1은 1등급 받은적도 있는데 왜 하나도 기억안나지 생1은...
-
서강 경제 0
서강 경제 폭인가요?? ㅠㅠ 점공 폭 빵
-
작수 5등급. 2
수학 50점대. 더 이상의 평가원 커로는 받지 않는다.
-
평가원 수학 현장 100을 찍어보고 싶어졌다.
-
고대 점공 0
25명뽑는과에서 점공 31명중 19등인데.. 붙을 수 있을까요.. 컨설턴트가...
-
커로 메타인가요 14
화미정사 평가원 기준 84 91 3 99 95
-
수악커하 6
사설 다 끌어와도 93점인게 레전드네 어떻게 96을 단한번도 못 맞아봤지 아..잘좀할걸
-
1. 서강이 한성 공대 보고 열등감느끼거나 2. 한성이 서강 복전보고 열등감...
-
사실 제가 빨리 온 거긴한데 쨋든 저보다 늦네요 어떡할까요
-
‘중국어독해와작문 5등급‘
-
평가원 커로 6
국어 96 수학 98 영어 3 생명 75 지구 89 이중 3개가 수능임..
-
수능장에서 똥을지려도 백95는 나온다 하는 과목 심신 안정도 +99인듯 실제로...
-
교욱청커로 7
국어 3등급 수학 4등급 화1 7등급 생1 5등급
-
1/8 : 파리 브이로그 마지막편 1/9 : 티원 레드불 보이스
-
액션 영화 좋아하는데 파워레인저같은 마블 말구
-
자그마치 미적분 6
-
국어 4등급(고2) 수학 5등급(고2 수능 동일) 영어 6등급(고2) ㅇㅇ
-
내 18년을 그리 믿고 살았는데 내 믿음에 부응하지 못하다니
-
프로스펙트 이론 vs. 프레이밍 이론+사회적 비교 이론 뭘로 할까
-
국어:4(이때 4말곤 다 1or2임) 수학:1 영어:2 물리학1:3(고2~고3)...
-
다음주에 홈에서 하는 오사수나 경기만 이기면 구단 역대 최대연승기록 경신인데......
-
할 짓 없어서 뻘글 싸지르는 중이니까 이거라도 보고가셈ㅋㅋ 적당히 잘 넣은 것 같나요??
-
국어 백분위 90 수학 백분위 91 영어 4등급 물리 4등급 백분위 68 지구...
-
밥 한번 먹기도 힘드네 에휴....
-
ㅈㄴ 두@근대네
-
커하 / 커로 8
고3 교육청, 평가원만 커하 조합 99 / 100 / 1 / 99 / 99 커로...
-
ㅇㅇ?
-
이럼 잠 안 오는데..
-
그 뒤엔 다 허수들이겠..지요...? 제발ㄹ
-
붙을 가능성 높으면 물리 유기하고 영어공부하고싶다 ㅅㅂ
-
션티 프리퀀시 0
키스타트 하기 전에 고등베이직 단어장 외우고 있었는데(얼마 안외움) 이거 계속...
-
ㅁㅌㅊ? 0
내 프사 ㅁㅌㅊ?
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][학교 홈페이지 및 GLS사용법] 0
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
운동팟 결성햇다 4
낄낄
-
성대 사과 0
642.82인데 추합 돌아오긴 어렵겠져..?
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.