[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 ...
최근 수능 난문이
어떻게 만들어 지고 있는 지 ...
알아보겠습니다.
미적분 응시자 분들의 경우
아래의 두 문제의 공통점에 대해서
생각해보신 적이 있으신가요 ?
위는 2022 학년도 미적분 최고난문이고
아래는 2023 학년도 공통 최고난문입니다.
위의 두 문제를 보고
다음의 생각 3 가지의 생각이
든다면 열공하는 학원 강사이거나,
최상위권 수험생일 가능성이 높습니다.
(1) 점(을 좌표평면에 표시한다.)
(2) 계산 때리는 문제가 절대 아니다.
(즉, 그림으로 먼저 접근해야 한다.)
(3) 미적분의 출제 아이디어는
2~3년안에 수학2에서 반드시 출제된다.
위의 세 가지의 생각은
넘나 중요해서 ...
올해 수능에
위의 관점이 출제될 것이냐고
묻는다면
당연히 100 %
YES
입니다.
수능이 다른 시험들과
(즉, 6모, 9모, 학평, 사관, 경찰대)
수 많은 N제, 실모, ...
등과 차별점을 갖는 지점은 ...
(아주 당연해 보이지만)
근본에 대한 물음을
한다는 것입니다.
위의 두 문제에 관련된 기본 이론은 다음과 같습니다.
(아래는 2024 이동훈 기출 수학1 평가원 편에
수록되어 있습니다.)
예를 들어 등식
f(2g(x))=3x --- (A)
이 주어지면, 다음의 생각이 바로 떠올라야 합니다.
점 (2g(x), 3x)는 곡선 y=f(x) 위에 있다. --- (B)
그리고 이를 좌표평면 위에 그림으로 나타내야 합니다. --- (C)
(A), (B), (C)
중의 하나라도 문제에서 주어지면
나머지 두 경우를 쓰거나, 그리거나 해야 합니다.
이제 맨 위의 두 기출문제의 붉은 칸을 다시 써보면
(위)
곡선 y=g(x) 는 점 (2x, 2f(x))를 지난다.
(아래)
곡선 y=f(x) 위의 점 (g(x), f(g(x))에서의 접선의 기울기.
입니다.
그리고 이를 좌표평면에
그림으로 나타내야 합니다.
따라서 위의 두 기출 문제는
문제 풀이의 출발점이 같습니다.
이런 식으로 평가원에서는
미적분에서 출제된 아이디어를
수학2 또는 수학1에 이식하여
최고 난문을 만들어내고 있습니다.
.
.
.
여기까지 설명을 이미 알고 있었다면
안정적인 1등급 또는 만점인 분들이고 ...
조금이라고 처음 생각하는 것이 있다면
2등급 이하 입니다.
이제 두 기출의 풀이에서
실제로 적용해보겠습니다.
(아래의 글은 풀이의 일부를 포함하고 있으므로
문제를 풀고 나서 읽기 바랍니다.)
2024 이동훈 기출 미적분 평가원 편 풀이의 일부입니다.
2024 이동훈 기출 수학2 평가원 편 풀이의 일부입니다.
위의 두 문제를 계산 만으로 푸는 것은
출제 의도를 이해하지 못한 것입니다.
예전과 달리 수능에서는 ...
식, 그림의 풀이 시간의 차이가 큰 문제도
출제하고 있습니다.
이는 출제 가능한 문제가
이미 소진되었음을 의미합니다.
상황이 이러한데 ...
산술적으로 완벽한 풀이를 지향하는
풀이를 고집한다면 ...
수능에서 좋지 않은 결과를
얻을 수도 있습니다.
.
.
.
이처럼 교과 과정의 중요한 개념은
매년 반복 출제되고 있으므로
(그것도 최고난문으로)
...
무엇인가가 반복된다 ?
그것은 우연이 아닙니다.
평가원이 여러분에게
보내는 메세지 입니다.
오늘 하루도
열공하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국시 자격 여부는 교육부 소관이라고 그럼 불인증먹어도 국시칠수있을듯..? 교육부...
-
잇올도착 1
투데이스타트
-
경지를 향한 단련이 필요하다
-
ㄹㅇ
-
오늘 밤에 하면 마감되어있을까요?ㅠ
-
손 핏줄이 갑자기 무슨 헬창 급으로 올라오는데 이거 왜이럼
-
10만원 넘지 않고 스테이크 맛있는 뷔페로요
-
나는 왤케 3
아파트 외벽에 붙어서 도망치는 꿈을 많이 꾸냐 전생에 도마뱀이었나
-
개빻았는데 빨리자서 다행이다
-
수분감 수1특 1
솔직히 틀딱기출문제 거른거 많음...
-
영어는 그래도 약간? 재밌으니까
-
춤추는 너의 모습은
-
비도 조금씩 오는데 달리니까 시원하고 좋아요
-
희망을 가chill guy
-
많을라나 막상 학교첫날갓는데 마음에들면어카지
-
술이 아직도 안 깨서 어지러운데 ㅅㅂ 인생
-
인강 한번 듣고 그 내용을 어케 다 기억하고 적어내림? 이게 될 정도면 애초에...
-
화작 교재 추천 0
화작 기출교재 어떤게 좋을까요? 강의는 안 들을 예정인데 뭐가 가장 괜찮을지 추천좀 해주세요
-
파송송 계란탁
-
자야지 0
-
얘 태어날때 데뷔했는데
-
집가는길 1
으어
-
공공인재는 최초합해서 4년 반액장학이고 경영은 추합 기다리고있는데 장학금...
-
오르비는 망했어 2
-
잠버릇 고약하네..
-
으으 2
피곤피곤
-
단국약 예비 31번, 전북약 실공10등 둘중 하나라도 될 가능성 있을까요?
-
주가조작으로 잡혀가셨다네요 조의금은 여기로
-
야추 ㅇㅈ 4
'옯붕아 이리와서 앉아봐라.'
-
사랑해요
-
진짜 ㅇㅈ마렵네 2
오랜된 생각이다
-
동아리 195화 3
이게 완결이고 뒤에 화는 안 볼거임뇨
-
기차지나간당 6
부지런행
-
고전소설 진짜 한 20분 박았는데 3틀하고 멸망함 아침에 이거 줄거리까지 보고갔는데...
-
명절이 싫다 0
싫어
-
얼버기 1
ㄹㅈㄷ 갓생이네요
-
다 자셈 ㅇㅇ 7
난 안 잠
-
어느정도 반인가요? 시대 낮반보다 강대스투가 낫다는데, 이정도면 스투 가는 게 나을까요?
-
그래 뭐... 짜피 최초합은 물건너간지 오래인데
-
들어도 돼요? 고2때까진 감으로 1 맞았는데 고3 기출 푸니까 바로 85점...
-
떨치고 자야지 1
레어생각만하면 잠이 안와요
-
항상 행복하세요
-
제일 재밋어 이상태로 짝녀랑 대화하는것듀재밌옸는데
-
살면서 케이크 딱 한번 먹어봤는데(어릴때 알러지때매 안먹음) 커서 알러지는 나아져서...
-
둘이똑같음
-
잔치국수 땡김 2
요즘 잔치국수 파는곳이안보여
-
음 그걸로 구분하면 되겠군
-
찌이익
-
오르비 안녕히주무세요 12
관점 잘 살펴봤습니다! '미적분의 출제 아이디어는 2~3년 안에 수학2에서 반드시 출제된다.'라는 말이 지금까지의 흐름을 볼 때 크게 틀린 말이 아닌 것 같아 더 와닿아요.