[이동훈t] 3월 수학, 이동훈 기출 비교
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 3월 수학 전 문항과
(단, 너무 쉬운 문제 제외)
2024 이동훈 기출을
비교해 보겠습니다.
기출이 어떻게 변형되어 출제되는지
꼭 익혀야 하는 수능 실전 개념은 무엇인지
반복되는 중요한 풀이에는 어떤 것들이 있는지
...
등등을 알아보겠습니다.
N수생 분들에게도 당연히 도움이 되겠지만
아직까지 기출에 대한 경험이 충분하지 않은
고3 분들에게 큰 도움이 되리라 생각합니다.
힐 위 고 ~!
<공통 (수학1+수학2) >
문제를 보자마자
이차함수의 정적분의 공식,
이차함수의 대칭성,
넓이의 분할과 합
이렇게 3가지가 떠오르지 않았다면
기출에 대한 연습이 부족한 것입니다.
아래는
2024 이동훈 기출 수학2에 수록된
이차함수의 정적분 공식에 대한
증명입니다.
이 문제를 보자마자
아래의 그림이 떠오르지 않는다면 ...
연습 부족입니다.
아래는 2024 이동훈 기출 수학2에
수록된 수능 실전 개념입니다.
19년에 출제된
교육청 기출의 순한맛 입니다.
이 문제에 대한 설명은 아래의 글로 대신합니다.
[이동훈t] A-B=(A+C)-(B+C) (+230311) 수학1
딱 보자마자 작년 9월 모평 문제가 떠올라야 합니다.
풀이법도 동일합니다.
합성함수의 방정식
이차함수의 대칭성
삼각함수의 실근의 합
이렇게 세 가지가 결합된 전형적인 문제입니다.
이 수준의 문제는
쎈 B 에서 충분히 찾을 수 있고요.
2024 이동훈 기출에서는
합성함수의 방정식에 대한 설명을
여러차례 해두었습니다.
ㄱ, ㄴ은 연속성, 미분가능성에 대한
교과서 적인 풀이를 적용하시면 되겠구요.
ㄷ에서는
이차함수의 정적분의 공식을
적용하면 계산을 단축할 수 있습니다.
아래는 2024 이동훈 기출 수학2의
예제 설명입니다.
딱 보자마자 작년 수능 15번을 떠올리게 되지요.
작년 수능 문제의 영혼 없는 버전이라고 보시면 됩니다.
표 또는 수형도를 그리면서 각 항에 올 수 있는
수를 판단하면 됩니다.
이건 특정한 이론이 필요하다기 보다는
경험적인 것이긴 한데요.
다만 증가와 감소를 반복한다는 점에서
주기함수 임을 알 수 있긴 합니다.
(이에 대해서는 6월 전에 따로
칼럼을 올려드릴 것입니다.)
이 문제는 아래의 글로 대신합니다.
[이동훈t] 평행이동을 해도 변하지 않는 성질 (+230320) 수학2
이 문제를 풀면
반복되는 항을 포함한 두 등식을 얻게 됩니다.
2번 이상 반복되는 항은 반드시 치환해야 하는데요.
이에 대해서는
2024 이동훈 기출 수학1에서
자세하게 설명해두었습니다.
이 문제 보자마자 아래의 9모 문제가 떠올라야 합니다.
위의 문제에
절댓값이 붙은 4차함수의
미분가능성이 결합되었다고
보시면 됩니다.
아래는 이 주제에 대한 기출문제의
풀이입니다.
(2024 이동훈 기출 수학2 수록)
이런 풀이과정은 반드시
익혀두어야 하겠지요.
수능은
그때그때 생각나는대로
푸는 것이 절대 아닙니다.
< 확률과 통계 >
교과서 연습문제에도 있는 문제입니다.
위, 아래 똑같죠?
다른 공, 다른 주머니에 해당하는 문제입니다.
(이 주제도 꼼꼼하게 학습해두어야 합니다.)
그냥 뭐 ... 같습니다.
J040 기출에 원순열을 결합한 문제입니다.
새로운 유형이라기 보다는
새로운 결합에 해당합니다.
J030 처럼
(1) 수(대상)을 선택하고
(2) 이를 나열한다. 이때, 같은 것이 있는 순열의 수를 이용한다.
라는 관점에서 같습니다.
이와 유사한 문제들은 워낙 많습니다.
이 문제 역시 ...
새로운 유형이라기 보다는
새로운 결합입니다.
아래의 두 문제를 묶었다고 보면 되겠습니다.
+여사건 포함
그래서 풀다보면 ...
어디선가 써본 풀이 같고 ...
뭐 그렇습니다.
< 미적분 >
속도의 관점에서 an = 3^n 으로 두면 됩니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
역시 다항함수의 속도에 대한 문제입니다.
위의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
치환에 대한 문제인데요.
사실 1을 모두 지우고, 근사적인 계산을 해도 좋습니다.
이에 대한 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
수열의 합과 차 (수학1) + 수열의 극한
이 물리적으로 결합된 문제입니다.
위의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
0<a<1, a>1 로 나누는 행동을
반드시 손에 익혀두어야 하는데요.
아래의 문제에서 이에 대한
연습을 하게 됩니다.
(2024 이동훈 기출 수학1 수록)
이 기출과 연관되어 볼 수도 있고 ...
사실 부등식 주고 자연수의 개수를 구하라는 문제는
워낙에 많으니까요. (특히 교사경에...)
수열의 극한값 구할 때에는
아래의 실전이론에 대한 이해가 반드시 필요합니다.
아래의 개념 설명은 2024 이동훈 기출 미적분 편에 수록되어 있습니다.
이 문제는 사실상
도형의 확대, 축소에 대한
이해를 평가하고 있습니다.
아래의 개념 설명은 2024 이동훈 기출 수학1 편에 수록되어 있습니다.
< 기하 >
이 문제를 읽자마자 아래의 문제가 떠올라야죠.
이 문제 보자마자 아래의 문제가 생각나야 합니다.
추가적인 설명은 아래의 글을 참고하세요.
[이동훈t] 한 각을 공유하는 두 삼각형 (+230330기하) 수학1 + 기하
위의 두 기출문제는
삼각형(사다리꼴 포함)에서의
닮음을 평가하고 있습니다.
이차곡선에서는
삼각형(사다리꼴 포함)에서의
닮음비를 자주 묻습니다.
이 문제는
이차함수의 정의와
한 꼭짓점을 공유하는 2개의 삼각형를
결합된 것인데요.
이에 대한 설명은 2024 이동훈 기출 수학1에서 해두었습니다.
쭉 읽어보신 분들은 아시겠지만 ...
올해 3월 학평 수학은
기출과 수능 실전 개념에서
절대 벗어나지 않습니다.
평가원 기출 3회독,
(+수능 실전 개념 포함)
교사경 기출 2회독
이면 6월에서
당연히 1등급을
쟁취할 수 있습니다.
하고 싶은 공부를 해서는 안됩니다.
해야 하는 공부를 하길 바랍니다.
오늘도 열공 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미치겠다 0
사실 뻥이긴 함
-
10년 만에 통상임금 판례 변경…"추가 법정수당 지급 부담 발생할 것" 1
법무법인 바른(대표변호사 이동훈·이영희·김도형)이 '통상임금 대법원 전원합의체 판결...
-
원래 몇시에요?? 정해져잇음요? 원서질 잘못해서 걍빨리 뜨거운합격 받고 연대나 기다리고싶음 ㅠㅠ
-
경찰대나 사관학교 꼭 보라는데 둘다 동시에 응시할 수 있어요?
-
ai얼평 이상한 게 23
안 예뻐보이는 사진 넣으면 7.2점이고 예뻐보이는 사진 넣으면 6.1점임 내 안목이 거지같은건가
-
흠 4
제 얼굴 아닙니다
-
사문지구 5
연치 연약 목표고 사문지구 고민중인데 괜찮은 선택일까요
-
피방갈까 0
심심하다….
-
ㅎㅎ ㅃㄹ 면허 따야겠디
-
돌아가는걸 보니 진짜로 우르르 불인증각 나오는거같고 다행히 비의대도 원서 같이써서...
-
고려대 조발해라 2
고>>>연 될 수 있는 마지막 기회다.
-
보정한 사진을 올려도 5점을 못넘네 자기객관화 완료
-
하나가 아직도 22%인데 심지어 오늘 한명이 는것도 아니고 빠짐…
-
작수 원점수 72 백분위 117로 3등급 받았습니다 지금 손승연쌤 커리 따라가는데...
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] [우선선발 장학금 안내] 1
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
71.4%(+1.3%p)
-
영어를 풀 때 지문에서 뭘 이야기 하는 지도 모르겠고 지문 이해가 하나도 안되는데...
-
ㄷㄷ 2
개정확하네..
-
자료들을 보니 작년이 유독 추합이 안 돌았던 거 같은데 혹시 특별한 이유라도 있나요?
-
07 정시 파이터입니다. 모고 기준 국어 5등급 수학 5등급 영어 5등급 사탐...
-
올해 한지선택했다가 나태해져서 던진 기억이
-
의평원 인증결과가 등록전에 나오나요? 등록 전에 의평원 인증 여부를 알 수 있을까요??
-
중3때 생긴이후로 안사라짐 요즘 일주일 평균 5~6시간 개꿀잠 자고있는데 왜지
-
당연히deserve하지
-
장재원T 미적 3주차 라이브 신규생인데 사이트에서 교재 소진됐다고 하면 복습 영상...
-
20.09 점유소유 21.11 예약 23.09 유류분 24.LEET 양육협약 정법을...
-
심심심심해 팬시팬츠 어드벤처 해볼까...
-
영풍문고에 잇앗는데 남자 두명이 개조심스럽게 다가와서 촬영해도 되냐고 물어봄 첨에...
-
안녕하세요..혼자 진지하게 고민중입니다 한참 고민하다가 이곳에서털어볼수밖에 없습니다...
-
원래 김범준 스블 들으려 했으나 육상에서도 인강을 많이 볼 순 없을 것 같아서...
-
오늘 아침 점공 2명이나 더들어와서 봤더니 안따였습니다 휴 아카라카를 위하여 연고전을 위하여
-
덕코내놧 9
내놧
-
지금 봤는데 아 1월 3일까지 등록해야되네 내 60만원 미친 자살마렵다
-
어떻게 해야하나요?
-
민초한입 아닙니다 23
네...
-
철업던 사랑니썰 38
수능때매 시간아까워가지구 4개 한번에 뽑앗는데 집에 오는데 지혈이 잘 안된거임 피가...
-
자퇴해도 문자가 안와서 불안하네요 로그인은 안되는데 비번찾기하면 아이디는 뜨고…...
-
ㄱㅊ음? 서점에 잇어서 살까말까 거민중
-
의치한 목표로 한번 더 해볼까 하는데 2과목 끼는게 나을까요 아님 11으로...
-
만화 ㅊㅊ좀 9
만화책보고싶네 갑자기
-
친구가 갑자기 자긴 4개나 뽑아야 한다길래 겁 먹음..
-
분당인들한테 성남 사냐고 말하면 엄청 싫어하더라고요 7
약간 홍콩 사람들이 자기 중국 산다고 말하지 않는거랑 비슷한 느낌
-
11명이 모두 허수인 가능세계 존재함?
-
스카갈까 7
요즘 너무 나태한 느낌 ㅠㅡㅠ 가서 라인 ck 볼 거긴 한데 ㅎ.ㅎ
-
이유도 아시면 설명해주세여
-
앞머리 다운펌으로 누를건데 이머리 가능함 ?
-
현역때 생지 6모 92 / 93 9모 79 / 91 수능 100 / 91 (인데...
-
영어 지원 좀 해라 ㅡㅡ
-
AI 폼 미쳤다 0
강아지 ㄱㅇㅇㅇㅇㅇㅇ
첫번째 댓글의 주인공이 되어보세요.