칼럼10) 소소한 테크닉
나름 알려진 편이고, 은근히 유용하며 개념적으로도 의미가 있는 '소소한' 테크닉 하나를 소개해드릴까 합니다.
이미 알고계신 것도 있을 거고, 아마 처음보는 것도 있을거에요!
이는 e^x의 재밌는 특징에서 시작됩니다.
y=e^x는 도함수가 e^x이죠. 원함수와 도함수가 식이 같다는 겁니다. 즉, 원함수의 함숫값이 그 점에서의 미분계수인 셈이죠. x=a에서 함숫값은 e^a, 미분계수도 e^a일겁니다.
기울기가 e^a라는 것은, x축으로 1 이동할 때 y축으로 e^a만큼 이동한다는 뜻이죠. 그런데 마침 이 지수함수 위의 점(a,e^a)는 함숫값이 e^a네요.
여기서 다음 사실을 알아낼 수 있습니다.
e^x 위에 점 (a, e^a)에서의 접선은 x절편이 a-1이겠네요!
이걸 뒤집어서 말하면, (b,0)에서 y=e^x로 접선을 그으면 접점은 x좌표가 b+1인 곳에서 생긴다는 겁니다. 기울기는 e^(b+1)이 되는 것이구요.
y=e^x 뿐만 아니라 얘가 평행이동되었을 때도 마찬가지입니다. 그 함수의 점근선 위의 점에서 접선을 날렸을 때 접점은 x좌표가 1 큰 곳에서 생깁니다.
아래 문제에 적용해보겠습니다.
기출 문항입니다. 이미 다들 잘 알고 계실 것 같습니다.
최대인 순간은 바로 나오지 않아서 계산을 좀 해줘야 하지만, 최소인 순간은 분명하죠. 기울기인 양수 a가 최대인 순간과 y절편인 음수 b가 최소인 순간이 일치하는데, 다음과 같이 양쪽에 동시에 접할 때입니다.
(그림 출처: ebs)
일단 대칭에 의해 x절편이 3/2인 걸 캐치한 상황에서, 접한다는 정보를 이용해 a를 구해야 합니다. 이때 앞서 알려드린 소소한 테크닉을 이용해볼게요. 그림에서 표시된 t가 3/2보다 1만큼 큰 5/2겠죠. x=5/2일 때 f(x)의 함숫값은 루트 e입니다. 따라서 이 순간에 a는 루트e네요.
물론 s를 이용해서 구하셔도 됩니다. s의 경우에는 x좌표가 1/2이 되겠죠. g(1/2)= -루트e니까 기울기는 루트e여야겠지요. (g(x)는 아래로 그려진 상황이니까 -부호를 빼줘야 합니다.)
어찌됐건 직선을 이렇게 완성할 수 있겠습니다. 훨씬 간편하죠!
평행이동뿐만 아니라 확대축소됐을 때에도 이런 정보를 뽑아낼 수 있습니다.
이 함수의 경우에는 x축 위에 (a,0)에서 접선을 날렸을 때, 그보다 x좌표가 1/5만큼 큰
이 점에서 접점이 생기겠죠. 함수가 5배 축소되었으니 앞서 말씀드린 1차이난다는 경향성도 5배 축소하여 1/5이 되었다고 생각하시면 되겠습니다. 주의할 점이 있다면, 이때는 미분계수도 5배를 해줘야 하겠네요. 그래서 식을
다음과 같이 써낼 수 있습니다. 근데 이건 실수 가능성도 있어보이니(???: 아 ㅆ 5배 안했다) 이건 검토용으로 사용하시면 좋을 것 같습니다.
이 특징은 y= lnx 에서도 당연히 읽어낼 수 있겠죠. 대신 1 차이 난다는게 x축이 아니라 y축의 얘기로 바뀝니다.
e의 x승 놈을 뒤집은 거로 봐도 괜찮고, lnx의 도함수가 1/x이란 것에 착안하여 기울기 해석을 하셔도 됩니다. (기울기가 1/m라는 것은, x축으로 m 증가할 때 y축으로 1 증가한다는 뜻!)
한편, 다음과 같은 의문이 드실 수 있습니다. "왜 하필 e^x에서만?"
적절한 의문이죠. 사실 이 얘기는 모든 지수함수에 대해 가능합니다.
얘도 원함수와 도함수가 상수배 차이나는 꼴이므로 다음 정보를 이끌어낼 수 있습니다.
a=e일 때는 저 차이가 1이 되었던 거죠.
준비한 내용은 여기까지입니다. 원함수와 도함수가 관계되어있다는 지수함수의 성질을 이용한 재밌는 해석이었다고 생각합니다. 앞으로도 재밌는 칼럼과 자작문제 많이 보여드리겠습니다. 유익했다면 좋아요 부탁드리고, 팔로우 해두셔서 꼭 확인해보세요!
0 XDK (+1,000)
-
1,000
-
과외 시작해볼까 0
수학이나 물리 가르치고싶다
-
https://theconversation.com/america-is-increasi...
-
님들 국어 공부 0
재수 시작했는데 마닳이나 창우쌤 둘다 1월이 오픈해서 그따 부터해도 괜찮으려나요...
-
그냥 아~ 괜찮게 갔네 정도려나 뭔가 서연고는 와~인데 성대부터 조금 인식이 바뀌는거 같음
-
현타 ㅈㄴ 오네 최초합에서 추합 결국 불합까지 뜰게 보이니 걍 쫄튀해야되나 진짜...
-
1. 반수할거라 집근처 대학 8칸 걸어놓고 갈거임 2. 근데 뱃지를 달고싶음 3....
-
언제나오나요
-
ㄹㅈㄷ늦버기 0
무휴반하는 꿈 꿨어요
-
어무니가 교사시라 극대노하신 기억밖에 없어서 잘 몰룸뇨.설명 좀 해주셈뇨.
-
왜 만두 두개먹고 배부른거지...이해가 안된다
-
(고2 10모 국영수 132 나왔습니다 이번 수능은 시간 재고 풀었는데 국어...
-
안 하는 게 맞나요? 저 진짜 의사 되고 싶었는데... 10년 넘게 지켜온 꿈이고...
-
어느 순간부터 현역으로 자기 기준에 적당히 만족할만한 대학을 가서 입시판을 이미...
-
뭔가 한 번더 시험 봐도 될 것 같고... 내년에 의대생들 어떻게 될지 걱정되고...
-
숭실대 합격생을 위한 노크선배 꿀팁 [숭실대 25][수강신청꿀팁] 0
대학커뮤니티 노크에서 선발한 숭실대 선배가 오르비에 있는 예비 숭실대생, 숭실대...
-
낼부터 추합시작 1
제발 담주 월요일까지 붙게 해주십시오......
-
마플 기출 돌리고 있는 중인데 이거 다 풀고 바로 4규 시즌1 단계로 넘어갈까...
-
반수보다는 재수 9
삼수보다는 삼반수 사수보다는 사반수 오수보다는 자살
-
학종이든 교과든 보니까 경쟁률 높고 충원도 다른 과에 비해 덜 도는거 보니까...
-
프사 변경 3
고2때 국어 교과선데 합리적 의심이 들어 이걸로 했습니다
-
2학기에 휴학하고 반수하면 휴학했다고 학점이 깎이거나? 그러진 않나요..? 로스쿨...
-
공무원이나 교사들 반응은 어땠나요? 갑자기 궁금해지네요 자기들 밥그릇 달려있으니까...
-
사랑이 담겨있는 한 개만 주세요
-
담임이 아침부터 나를 교무실로 부른다 담임T:우리 OO이 탐구 하나만...
-
~~~~~~~ 5
워!
-
오늘 6시에 재밌길 기대해본다 부남들 정모또 가나ㅋㅋ
-
현재 국어 모고 공부 안했고 고1 모고 치면 국어 낮은 4, 높은 5가 뜹니다 이젠...
-
배치표 1
이대랑 외대랑 배치표상 점수 같은 과가 왜 진학사에 넣으면 칸수가 다르게 나오나요?
-
딱풀핑—> 얘가 goat임 엄지손가락만한애가 딱풀들고 500원짜리… 1000원짜리…...
-
의사단체에서 24학번을 왜 버림 뭐 같이 싸운 의리 이런 얘기라기보다는 선배들이...
-
굿즈배포 ㄹㅈㄷ 7
어쩌다보니 당첨자 두분이서 비대면 굿즈 수령장소가 같아짐 둘이 가져가다가 마주치면...
-
ㅈㄱㄴ
-
대학원생 아저씨입니다. 재작년 쯤부터 입시철마다 물리학과/자연대/공대 진학 관련...
-
이런 조합은 진짜 드물거 같긴한데 쌍지에서 덜고인 세지랑 쌍사에서 덜고인 동사끼리...
-
여긴 어차피 떠날텐데 그냥 공부 1도 안한 상태인 게 기분이 이상함
-
부남이들 다 어디간거노 ㅃㄹㅃㄹ 정모좀하자 어디갔냐 다들
-
프레임 화2 기출문제집 풀어보신 분들 시중에 화학2 기출문제집이 이거랑 김준기출이랑...
-
3개년 성적 인증 16
시험을 항상 잘친다는건 매우 어렵다. 역시 시험은 컨디션과 운이 많이...
-
유튜브 진학티비가 처음으로 공개했습니다. 서울 /연세 /고려 /서강 /성균관 /한양...
-
2023년 1월>3월>2월>4월~10월 비슷>11월>12월
-
애 둘 낳으면 육아휴직만 하다가 군복무기간 끝남 애 둘낳으면 군필 이상 애국자 맞긴함
-
죄송한데 이성적이면 인하대 자유전공융합학부나, 공합융합학부 가능할까요? 진학사 금일...
-
얼리버드 기상 2
-
저는 현재 한의대에 재학 중인 학생입니다 제 자그마한 경험을 써볼까 해요. 사람은...
-
다음번에 오면 시켜봐야지
-
스나 성공하게 해달라고 매일 절에 가서 108배 하려고요 ㅋㅋ
-
어휘력이 부족해서 말로 설명은 못하겠는데 상당히 훌륭한 영화인거 같아요.
-
개인적으로 여의사는 공보의3년 복무를 해야한다고 생각해요 1
그렇게 사명감 사명감 거리시는데 막상 실제로 처참한 지방의료에 의사로서 기여할수...
오늘도 개ㅊ를 벅벅
오우쉣
ㄷㄷ
무슨 말인지 이해 못하는 문돌이들 개추 ㅋㅋㅋ
무민귀여워요
으악 미적이다
으악악
아니 ㅅㅂ 이게 뭐지.,?