1000덕) 수2 자작 ㄱㄴㄷ 문제
<나중에 다시 해 보겠습니다. 죄송합니다.>
그냥 일반적인 내용입니다. 문제 특징 때문 14번에 넣기에는 애매하긴 하네요.
반례 같은 거 꼼꼼하게 따져 보세요!
최초로 맞게 풀고 설명까지 제대로 하시는 분께 1000XDK 드리겠습니다! (이미 아시는 분들 제외)
(주관적) 난이도 : 3.5/10 (였는데 헷갈리는 건 저도 인정합니다...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다음. 설의 d-283
-
만약에 26수능을 제대로 준비한다면 올해 계획(간단하게) 0
국어-기출 수특만 n회독(꼼꼼히).사설은 사절 수학-이건 그냥 나에겐 취미라...
-
차단목록 ㅇㅈ 11
별루없네
-
현역: 공부 제대로 해보는 것도 첨이고 이것저것 절제,인내 하는 것도 첨이라 그냥...
-
1) 타자가 빠름 2) 두자리x두자리 거의 안나와서 가능한 뽀록 (평균점수 90~100점대)
-
질문 받습니다 2
노뱃 노에피입니다 ㅠ ㅠ
-
차단목록 ㅇㅈ 7
-
양변에 같은 거 있으면 지워주는 걸 뭐라고 하죠? 왜 기억이 안나지
-
이게 이해만으로 풀 수 있는건가 어릴때 공부 어케한거지
-
샐러디 멕시칸랩이랑 아아 프레퍼스 다이어트스테이크샐러드랑 제로콜라 햇반에 계란...
-
한의대합격이라거나 삼수성공이라거나 수능1틀이라거나 그런거없음
-
한뱃천지네,, 3
ㄹㅇ
-
받을 생각으로 하고 (그렇게 해야 2등급 시작...) 국영은 상대적으로 후순위에...
-
삼수성공 예정 질받 15
선넘질도 가능
-
다이어트 2일차 11
라면 끓여먹고싶다
-
내일졸업기념질받 18
선넘질도ㄱㄴ
-
스트레스 받으면 바로 소화 안되고 두통 오는걸로 증상이 나타나는 편이라 타이레놀...
-
3이자나ㅅㅂ 근데 왜 내가 사수생이냐고
-
날이면 날마다 오는 행사입니다
-
자기가 안하는과목 남 과외글 '칭찬하며' 공유를 하는게 신기함. 진짜 하는 과목이면 이해하는데.
-
춘식이 사가세요
-
메가랑 대성 둘 다 이씀ㅁㅁㅁ 완전 노베는 아니고 고2때 내신으로 했어요 근데 좀...
-
그 사람이랑 같은 대학 같은 학과에 다니고싶다
-
눈 안아프세여 블루라이트 때문에?
-
EBS 국어 무시하지말고 꼼꼼히 해야함 원본 ebs 한번 깔끔하게 풀고 강e분으로...
-
ㄱ ㄱ
-
시발점 질문 2
지금 2회독째인데 예제가 술술 풀리면 굳이 개념 강의 안봐도 되나요?
-
암산테스트 링크 0
https://www.zetamax.xyz/ 120초로 맞춰서 ㄱㄱ
-
서울대 조발 0
서울대 조발 언제할까요
-
그냥 멍때리거나 엎드려있나
-
화작은 진짜 0
백분위와 원점수가 같아도되면 해도됌.... 98 98 진짜 실환가 싶었음
-
그 사람이 내 기억 다 지워줬나봐
-
강추함
-
근데 인바디 5
금식은 물론 물도안마시고 운동 전에 재야하는거 알고 하는거임 다들? 흠..
-
오티신청 아직 받음?
-
국어 문학 독서 언매 수학 수1 수2 미적 탐구 물리학1 화학1
-
숙면완료 2
비상
-
문돌돌이들 대부분이 이 조합인데에는 다 이유가 있어요
-
작수 물지 개념 깔작 생 개념 깔작 동사세사는 한능검 딴걸로 조금씩 날막 생지 ㄷ 쌍사 수학 등신
-
받음?? 대신 투자 망하면 할수있는 직업 노가다밖에 없음 ㅇㅇ
-
왜냐면... 생명같은거 하다가 도표 처음보면 이게 킬러라고..? 싶긴 하거등요.....
-
이거 자기탭 되고(서메기는 비치된 거 쓰는데 다 뚫려있어서 메가 스마트탭 산 거...
-
으흐흐
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
https://orbi.kr/00071781937 엄...
-
캐릭터부터 낭만이 넘침 하찮은 귀여움 하나로 승부보는게 고트라 불릴만함
-
휴릅 3
2월 7일 6시까지 휴릅할게요 바자관에서 하다 걸리면 벌점이라 ㅜㅜ 공부좀 해야죠
-
사문 뭐 꿀인거 맞는데… 윤사 역사 지리 같은 훨씬 더 꿀이 잇자나.. 난 6평...
-
해주실 분 계신가요 많이는 못드려도 조금이라도 사례할게요 뒤늦게 독학하려구해서..
아마 실전에서는 이렇게 해서 ㄱㄴㄷ 하지 않았을까...
으음... ㄴ이 문제인 걸까요... g(alpha)가 0이 아니라면 g(alpha)는 양수이거나 음수인데...
f(x)가 극값이려면 애초에 g(x)의 부호 변화가 생겨야 하는데... g(alpha)가 0이 아니라면 x = alpha에서 부호변화가 생길 수 없으니 극값도 없다고 판단한 거였는데... 뭐가 문제인 걸까요.
그리고 ㄷ에 제시하신 저 함수는 만족 안 하는 걸로 보이네요
그러면 답이 ㄱ ㄷ인 건가요? ㄴ을 어떻게 판단해야 하는 건지 잘 이해가 안 되네요...
근데 ㄴ에 저 집합기호는 교집합 기호 아닌가요...?
그러면 주어진 범위는 공집합이 되는데요...
아 뭐야 잘못 입력했어요 ㅠㅠ
ㄱ,ㄷ인가요?
아 ㄷ이네요ㅜㅜ
연속이 미분가능성을 보장하지는 않으니까요..?
g(x)가 존재한다는 건 미분가능하다는 의미긴 해요
다만 미분계수 정의가 극한으로 정의돼 있기 때문에 g(x)의 '극한값'만 존재하고 함숫값이 이와 달라도 g(x)가 미분가능한 함수의 도함수가 될 수 있어요
도함수는 한 점에서만 불연속일수는 없지 않나요?
그리고 g(x)가 어떤 함수인지 알기 전까지는 g(x)의 존재가 g(x)의 실수 전체집합에서의 존재를 보장하지는 않지 않을까요? 예를 들면 알고보니
g(x)가 무리함수인 경우가 있을 수 있을 것 같아요
도함수는 몇 개의 점이든 불연속일 수 있으며, 극한값만 존재하면 원래 함수는 미분가능합니다. 이것은 논술과 임용고시에서 출제되는 소재라고 합니다.
f(x)가 실수 전체 집합에서 정의된 함수인데 모든 실수 x에 대해서 저 식을 만족시키는 g(x)의 정의역이 모든 실수가 아니면 모순이지 않나요?
제가 든 무리함수 예시는 오류가 맞네요..
다만 제가 말씀드리고자 하는 것은 도함수는 극한값이 존재하는 어떤 점에서 함수값만 그 점에서 다를 수는 없다는 거예요
아 그렇네요 도함수가 그 점에서 값이 존재하지 않는 경우 갖고 생각하다가 잘못 생각했나 봐요