RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (3/3) >
[목차]
1. 다항함수의 도출
2. 다항함수의 도출을 위한 정보
(1) 다항함수 f(x)의 인수가 주어진 경우
① 다항함수 f(x)에 대하여 f(a)=0인 경우
② 다항함수 f(x)에 대하여 f(a)=0, f’(a)=0인 경우
③ 다항함수 f(x)에 대하여 인수 (x-a)의 개수
(2) 다항함수 f(x)의 주어진 정보가 직선 위에 있는 경우
① 다항함수 f(x)의 주어진 정보가 상수함수 y=k 위에 있는 경우
② 다항함수 f(x)의 주어진 정보가 일차함수 y=px+q 위에 있는 경우
3. 다항함수의 이해: 다항함수의 함숫값
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
② n중근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
------------------------------------------------------------------------
[이전 칼럼]
RC - [수학Ⅱ] 삼차함수 네모박스 < 00 INTRO (+ 자기소개) >
RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (1/3) >
RC - [수학Ⅱ] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
------------------------------------------------------------------------
※ 수학Ⅱ 문제는 함수의 모양을 정확히 파악하는 것이 중요합니다.
머릿속에 그래프를 그려낼 수 있을 만큼 그래프 개념에 숙달되신 분이 아니라면,
반드시, 옆에 노트 등을 두고 그래프를 그리며 내용을 따라오십시오.
권장사항이 아니라, 필수사항입니다.
------------------------------------------------------------------------
이전 칼럼
[수학Ⅱ칼럼] 삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 (2/3) >
에서 이어집니다
3. 다항함수의 이해: 다항함수의 함숫값
위의 내용을 완벽히 이해하여 주어진 함수의 정보를
단순히 그냥 정보로 받아들이지 않고
근과 관련된 정보로 해석하여 패턴을 활용할 수 있을 때,
함수를 완벽하게 도출해내지 않고도
해당 정보를 활용하여 x값을 대입한 결과를 파악할 수 있으며,
반대로 x값을 대입한 결과를 역추론하여 함수를 도출해내야 하는
고난도 문제 유형에 대해서도 손쉽게 접근할 수 있습니다.
아래에서 설명하면서 문제를 푸는 과정에서는
“왜 이 쉬운 문제를 이렇게까지 돌아서 어렵게 푸는 것이냐?”
라고 반발심이 들 수도 있겠지만,
이후 최고난도 문제에 접근하는 중요한 Key를
쉬운 문제를 통해 체화하기 위해서라고 생각하고
따라와 주시면 감사하겠습니다.
아래 내용은 (1)에서는 이차함수, (2)에서는 삼차함수를
대표적인 예로 들어 설명하고 있으나,
해당 내용은 일차함수를 포함한 모든 다항함수에서 적용되는 내용입니다.
우선 스스로 이차함수/삼차함수가 아닌 다른 다항함수의 경우에는
어떻게 될지 상상해 보시고,
이후 과정에서 여러 문제를 풀어보며
해당 개념을 점점 체화해나가시기 바랍니다.
(1) 함수 f(x)의 개별 근에 대한 정보가 주어졌을 경우
① 개별 근에 대한 정보가 y=k 위에서 주어졌을 경우
위의 그림과 같은 최고차항이 a인 이차함수 f(x)의 예시를 생각해 봅시다.
새로운 함수 h(x) = f(x)-g(x) 는 최고차항이 a이고 x=p, x=q를 근으로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q) | 만큼 떨어져 있습니다.
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(1)-①을 조금 변형해서 f(x)가 직선 y=bx+c와 만난다고 해 보죠.
새로운 함수 h(x) = f(x)-g(x) 는 역시 최고차항이 a이고 x=p, x=q를 근으로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q) | 만큼 떨어져 있습니다.
예시 상황을 한 번 만들어보죠.
[문제] 최고차항의 계수가 1인 이차함수 f(x)가 한 직선 y=g(x)와 (1, 1), (5, 9)와 만난다고 할 때, f(4)의 값을 구하시오.
다음 문제를 푸는 정석적인 방법은 다음과 같습니다.
먼저 y=g(x)가 (1, 1), (5, 9)를 지나므로
x증가량은 4, y증가량은 8 이므로 기울기는 2, y절편은 –1입니다.
즉, g(x) = 2x-1
f(x)와 g(x)의 그래프가 x=1, x=5에서 만나므로
h(x) = f(x)-g(x) = f(x)-(2x-1) = (x-1)(x-5)
f(x) = (x-1)(x-5)+(2x-1), f(4) = 3×(-1)+7 = 4 (Q.E.D.)
그런데 위에 설명한 개념을 응용할 경우
f(x)와 g(x)가 x=1, x=5에서 만난다는 점을 이용해
f(x)와 g(x)가 y축 방향으로 | a(x-1)(x-5) | 만큼 떨어져 있으므로
x=4에서는 f(x)와 g(x)가 | 1×3×(-1) | = 3 만큼 떨어져 있고,
f(x)의 최고차항의 계수가 양수이므로
1<x<5에서는 f(x)가 g(x) 아래에 있다는 점을 이용하여
g(x)=2x-1 에 대하여 g(4)=7, g(4)-3 = 4 = f(4) (Q.E.D.)
와 같은 방식으로 답을 구할 수도 있습니다.
말로 풀어서 이렇게 내용이 더 길어 보이지만,
머릿속에 해당 개념을 떠올리고 계실 경우 해당 풀이는
g(x) = 2x-1, g(4)=7, | f(4)-g(4) | = | 1×3×(-1) | = 3,
f(4) = 7-3 = 4 (Q.E.D.)
와 같이 줄어듭니다.
훨씬 더 빠르게 문제풀이가 끝나게 됩니다.
(2) 함수 f(x)의 n중근에 대한 정보가 주어졌을 경우
① n중근에 대한 정보가 y=k 위에서 주어졌을 경우
기본적으로 (1)-①과 유사합니다.
위의 그림과 같은 최고차항이 a인 삼차함수 f(x)의 예시를 생각해 봅시다.
새로운 함수 h(x) = f(x)-g(x) 는 최고차항이 a이고 (x-p), (x-q)²를 인수로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)²입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q)² | 만큼 떨어져 있습니다.
② 개별 근에 대한 정보가 y=bx+c 위에서 주어졌을 경우
(2)-①을 조금 변형해서 (1)-②와 같이 f(x)가 직선 y=bx+c와 만난다고 해 보죠.
새로운 함수 h(x) = f(x)-g(x) 는 역시 최고차항이 a이고 (x-p), (x-q)²를 인수로 갖습니다.
즉, h(x) = f(x)-g(x) = a(x-p)(x-q)²입니다.
이때 x=t에서 f(x)와 g(x)는 | a(t-p)(t-q)² | 만큼 떨어져 있습니다.
전 게시물에서 풀었던 문제들을 다시 한 번 풀어봅시다.
전 게시물의 example04 문제를 구해야 하는 함숫값만
f(0)에서 f(3)으로 살짝 변경한 것입니다.
위 문제를 풀고 난 후, f(0)은 얼마일지도 한 번 구해보시기 바랍니다.
최고차항의 계수가 1인 삼차함수 f(x)의 x=2에서의 접선은 g(x) = x+2 이고,
f(x)와 g(x)가 x=2에서 접하고 x=-1에서 접하지않고 만나므로
h(x) = f(x)-g(x) 는 (x+1), (x-2)²를 인수로 갖고.
f(x)와 g(x)는 | (x+1)(x-2)² | 만큼 떨어져 있습니다.
그리고 그림을 그려보면 알겠지만
최고차항의 계수가 양수이므로
x=3에서는 f(x)가 g(x) 위에 있고,
g(x)에 대해 g(3)=5이며,
x=3에서 f(x)와 g(x)는 | 4×1² | = 4 만큼 떨어져 있습니다.
즉, f(4) = 5+4 = 9 (Q.E.D.) 이군요.
좀 더 어렵게 가 볼까요,
전 게시물의 exapmle03을 그대로 가져왔습니다.
(가) 조건에 따라 f(x)는 최고차항의 계수가 2인 이차함수입니다.
이때 (나) 조건을 해석해보면, f(1)=0, f’(1)=3 입니다.
즉, f(x)의 x=1 에서의 접선 y=g(x)
(1, 0)을 지나고 기울기가 3인 직선이며, 즉 g(x) = 3x-3 입니다.
이때 h(x) = f(x)-g(x) 에 대하여 by definition of 접선,
h(1) = f(1)-g(1) = 0, h’(1) = f’(1)-g’(1) = 0 이므로
h(x) = 2(x-1)²입니다.
f(x)와 g(x)는 | 2(x-1)² | 만큼 떨어져 있으며,
x=2에서 g(2)=3 이고, f(x)는 g(x) 위에 있으며,
f(x)와 g(x)는 | 2×1² | = 2 만큼 떨어져 있으므로
f(2) = 3+2 = 5 (Q.E.D.) 입니다.
------------------------------------------------------------------------
이렇게
RC - [수학Ⅱ]삼차함수 네모박스 _ < 01 다항함수의 도출 및 함수의 이해 >
가 마무리되었습니다.
해당 내용은 단순히 삼차함수 관련 문제를 풀 때뿐만 아니라
모든 수학Ⅱ 문제를 관통하는, 수학Ⅱ 이해의 뿌리가 되는 내용이니만큼
해당 내용을 눈 감고도 머릿속으로 떠올릴 수 있을 만큼
철저히 숙지해두시기를 바랍니다.
댓글과 좋아요 등으로 많은 분들이 유익한 글 볼 수 있도록 도와주시면
글을 작성하는 저에게도, 수능을 함께 준비하는 동지들에게도 큰 힘이 됩니다.
위 내용에 대한 질문이 있으시다면,
사진 등으로 피드백이 불가능한 오르비 쪽지보다는
제 프로필에 있는 오픈채팅 링크로 들어와 주시면 감사하겠습니다.
다음 칼럼의 주제는 삼차함수 고난도 문제의 Essential 한 Key가 되는
RC - [수학Ⅱ]삼차함수 네모박스 _ < 02 삼차함수 네모박스, 삼차함수의 도함수 _ 개념 소개 >
(링크)
입니다.
빠른 시일 내에 돌아오도록 하겠습니다.
감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 2 답글 달기 신고
-
회원에 의해 삭제된 댓글입니다.좋아요 1
-
영웅호걸타임~ 0
드가자고
-
내년에는 꼭 합격하리라~
-
존경하는 오르비언님덜.. 저는 예비 고2이고 수1,수2,확통 선행이 전혀 되어있지...
-
…
-
나도 이쁘게 생기고 싶어><
-
잠시 휴릅 1
미국주식장 봐야됨
-
인하대라고 하면 2
딱말했을때 뭔 대학인지 모를정도 인가여 (비하하려는게 아니라 궁금해서요)
-
닉변하기전에는 이륙할 일이 없을 줄 알았는데 실친들이 닉네임 알아보면 지워야겠다
-
논술에 배경지식은 얼마나 중요하고, 인문 논술에 한해서 얼마나 깊이 알아야 하는지...
-
고려대 시발좀 1
좀 내라 이제 좀 하…. 어떻게 내는지도 모르겠고 이젠 걍 좀 내라 그냥
-
기본적으로 말투가 딱딱한 느낌이라 임티 없이 보내기가 좀 그렇달까 혹시 저랑 쪽지를...
-
미장아 오르라고 3
아 .. 왜이래 너.. ㅡㅡ
-
예비고2인데 그냥 공통수학 베이스가 조금 부족하다 느끼면 노베 다 훑어보고 문제...
-
으응..
-
개억울하네 5
크리스마스든 크리스마스이브이든 내알바아니야!!!!
-
노베이스 위주로 모집 6개월이상 수강 학생 : 23명 현재 6명 진행중 모의고사...
-
쉽지않네
-
게임하고 인방좀 보면 하루 뚝딱이라..흠냐뇨이
-
으잉??!!
-
출석체크 1
ㅎㅇ
-
아빠가자꾸 다군 서, 한중한곳가서 ai공부하라카는데 서강대 ai자율전공이나 한양대...
-
아까갑자기나왜여기서이러고있냐싶어져서안녕하고갈려고했는데 유언비어가퍼질거같아취소함ㅎㅎ
-
어그로 ㅈㅅ 개급함 진학사 적정표본이 35명인가 33명인데 23명 밖에 안차서...
-
상쾌하다 0
6연패 후 마지막 펜타킬로 연패 끊음 크
-
어떤 방식으로 나오나요? 막 영어로 에세이 쓰기...?
-
집은 부산입니다. 무역 관련으로 가고 싶은데 전남대는 관련 과가 여수에 있어서 좀 고민 중입니다..
-
억까하지마
-
뭐 사야하지
-
차단하겟다.
-
텍스트양이 미쳤네
-
내년에 인강 안하심??????????????? 지구과학계의 국보인데
-
이과인애 내신이랑 문과인 애 내신이랑 똑같으면 보통 이과가 더 대학 잘가나요?
-
심심해서 들어가볼까 생각중
-
한완기 한완수 2
확통 처음인데 2026 한완기 사면 개념도 세세하게 들어있나요 통통이 개념이...
-
여기서 전문대 재학 딱 1명있고 본인이 올해 정시 서강대학교 갈듯 진짜 모든걸 걸고...
-
지역비하 직업비하 이거 왜 하는거임???
-
메이플 코디 ㅁㅌㅊ? 13
31,000원 들었음
-
물 론 친구도업고 여친도업어서 혼자갈거긴함 머임마
-
난 출근인데
-
ㅈ댄건가요?
-
현우진 몸풀기 0
ㅇㅇ
-
여친 만들어주 1
ㅜㅜ
-
ㅈㄱㄴ
-
만약 수시로 합격해서 대학등록을 해놨는데(1개대학) 수시마감후 1월에 등록을 취소할 수 도 있나요?
-
나이수
-
대체 어디를 가야 하는거죠? 95/98/3/94/96 화작/미적/-/물1/지1
-
확통 강사 추천 0
재수생이고 실전개념부터 다시 들을 생각인데 대성 강사분들중에서 추천해주세요
-
개쉬운걸 틀려버려서 97 99 2 99 98 될뻔했는데
-
이나이쳐먹고 3
입시커뮤니티에서 빨빨거리니까 현타오네 일찍자고 내일 공부나 열심히 해야지 에휴병