칼럼) 미분 가능성 (수정사항 있습니다)
미분 가능성 for Orbi.pdf
어제 갑자기 미분 가능성 나올 것 같아서 칼럼 올립니다!
수2 하시는 분들도 봐두면 좋은 내용 있으니 보시고, 미적 선택자들은 얻어갈 거 많을 듯 하네요.
다운로드 하시면서 좋아요 눌러주세요 :)
오랜만에 이렇게 칼럼으로 인사드리네요 9평 관련 글 아마 작성되는대로 올라갈 듯 합니다!
*수정 사항은 해당 페이지 이미지 아래에 썼습니다. 이미지들 확인 바랍니다
2번에서 두 번째줄부터 수정해주세요
(이번에는 g(x)의 극한은 존재하므로 (미분계수의 정의에 해당하는 x+h 즉, 증분의 극한값) f’의 값은 상관없다. 따라서 fg가 연속이 되도록 f=0만 되도 되어서 인수 개수 0개 초과면 된다.
3번의 경우 g->g’, f’->f로 수정해주세요. 결론인 0개 초과는 맞습니다.
ㄱ의 네 번째줄 좌극한식의 결과를 f(x)의 좌미분계수네서 우미븐계수로 수정해주세요
0 XDK (+21,020)
-
10,000
-
10
-
10
-
1,000
-
10,000
-
ㅈㄱㄴ
-
내일 전화를.. 아니 근데 학원비 왤케 비쌈요 용돈의 n배나 되네..
-
?
-
할코디언 1
ㅇㄴ 그거 뭔데 ㅎㅋㅅ 변형이라고 나무위키에 있는거냐 개끔찍할거같은데 본사람있음??
-
솔직히 241110도 그냥 2분컷냈어서 그냥 이렇게이렇게 풀면 당연한건데 싶지만...
-
여붕이구한다 ㅇㅇ
-
망했다 3
2년 된 버즈 잃어버림
-
원장연 원장연하는거 ㅈㄴ 긁히네
-
내가 쓴 과만 폭인 것 같네....... 다른 데 넣었음 최초합인데 허허 추합이라도...
-
과탐이 재밌음... 표본이 고여도 잘하면 그만
-
집 근처에 (목동,강남권x) 꽤나 지점 많은 브랜드의 관리형 스카 새로운 지점...
-
고3때 갑자기 사탐 선택한 애들 이과 350명인 학교에서 다들 하남자라고 비웃었지만...
-
중시경건 3
마음이 따뜻해지고 경건해지는 참 좋은 말이다
-
근데 점공이 2
한꺼번에 몇명 들어왔다가 또 하루종일 정체네요.. 이제 진짜 쓸 사람들 다 쓴건가
-
재밌군
-
해볼까 Yoon's 가르칠순 있는데 가르쳐도 되나?
-
1과목 실수들(원장연이라는 나쁜말은 ㄴㄴㄴ) 다 투로 가거나 사탐런치는게 지금...
-
1. ∃원인∀결과(원인→결과) : "모든 결과를 일으키는 어떤 원인이 존재한다."...
-
잇올 6시 오픈하자마자 1등으로 입실하던 시기와 무단지각으로 벌점 60점 쌓은...
-
ㅈㄱㄴ
-
나도 과외 구하고 십다 17
시급 만원에 할 수 잇구요 신촌 쪽에서 30분거리에 허수친구면 좋구요 제가 오르비...
-
문명6 0
오랜만에 해볼까
-
23수능 메타로 갈거임 즉 이번엔 작수와 달리 생판 처음보는 단어낚시질 4 5개...
-
"사회복지학과 지망생" 사복과 출신 반수생: STAY...
-
뜌따이 되는거같노 .....
-
네
-
3년동안 한시에 자고 6시반에 일어났는데 대학와서는 한시에 자면 9시 돼야 일어나는듯
-
햄버거는 아직 무리인가봐요
-
CC는 뚫으면 되는거잖아?
-
여붕이내놔 7
여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔...
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
-
내신영어 의문점 3
내가 내신 버린 이유가 영어 이년때문임 고1때 지문 풀암기로 존나 빡공할때도...
-
세특은 정상임 그래서 bb일 듯 반박시 니말이 틀림 제발
-
과탐2에서 과탐1오는걸 원런이라고 부름? 아니잖아 그냥 사탐이 당연한거고 과거...
-
필수본 교재없이 0
인강만 들으면 안되나? 완자 이미 있는데 사야하나?
-
자유대한~~~ 0
그냥 갑자기 써봄...
-
U치환 0
행복 유치환 사랑하는 것은 사랑을 받느니보다 행복하나니라 오늘도 나는 에메랄드 빛...
-
기하 과외 구합니다 17
각각 22 23 25수능 22번틀 100점 22번틀입니다 시급2 대학 성균관대...
-
여캐일러 투척 18
이거나 올려야지
-
물1 왜 버림? 4
안 씻기만 해도 되는 과목인데
-
커하 4
교육청 76 99 2 99 98ㅠ 역시 오르비라 그런가 다들 너무 고능함...
-
ㅋㅋ 1
ㅋ
-
사탐런 X 자기객관화 상황판단력 GOAT 사탐개척임
-
사탐런 생윤사문하는데 생윤 개념강의 들을 땐 다 잘 이해하고 잘 외웠는데 기출가니깐...
-
예비고3이고 겨울방학 때 지구 공부를 다 끝내야하나요 작년지구 내신다1맞긴했는데...
이거만 보고 수학 150점 받았습니다
가장 좋아하는 파트
9평 문제 궁금하네요 ㅎㅎ,,,
차수논리를 쉽게 풀어내셨네용 좋은글 보고갑니다
오랜만이시네요! 쉽게 쓰려 노력했는데 알아봐주셔서 감사합니다 ㅎㅎ
잘먹을게요! 선우형 기좀 주세요
사랑한다고
오늘공부는이것만한다 아ㅋㅋ
좋은글 감사해요!!!
칼럼추
잘 읽었습니다!
다만 f'(x)g(x) + f(x)g'(x)로 해석하는 부분에서 g(x)가 극한값은 존재하지만 함숫값과는 다른 케이스 부분에서 질문이 있는데요 ㅠ
위 식처럼 정의대로 생각하면 f'(x)g(x)부분에서 g(x)가 극한값이라 f(x)만 0이면 되는게 아닌건가요..? 이때껏 그렇게 알고 있었는데 왜 아닌지 잘 모르겠어요,,
특수 케이스면 위에서 말씀하신 걸로 되는 함수도 있는데 일단 일반적인 걸 다루느라 저리 썼습니다 ㅜㅜ 하지만 앞선 댓글의 것도 가능한 경우도 있어서 결국 문제마다 따져봐야죠…!
아 그렇군요! 일단 1개 초과인걸로 알고 있어야겠네요 ㅎㅎ 좋은 칼럼 감사드립니다!!
제가 다시 검토 한 번 해보겠습니다
고쳤습니다. 제가 3번 설명을 2번에 썼습니다 해주신 말씀이 맞습니다.
2페이지 3번 설명에 오류있는거같아요..! fx f'x gx g'x 반대로써져있는거같아요..
기재했습니다. 제가 오타를 반대로 냈네요 알려주셔서 감사합니다,,
아니에요!! 5페이지 ㄱ 마지막에도 우미분계수 좌미분계수라고 오타있는거같아요 !
맞네요 …. 감사합니다
올려주시는 자료 항상 너무 잘보고있습니다 감사해요 :)
죄송한데 올리신 파일에 수정사항이 반영된건가요?
이미지 밑에 써두었다고 기재했습니다 제가 밖이라 지금 파일 수정을 못하네요,,
좋은자료 너무너무감사합니다