이 칼럼 때문에 1컷 50 (화학1-4편) 2022ver.
오늘은 Step2-2 중화반응 문제를 풀 때 쓰는 명제와 NT로 증명에 대해 작성해보겠습니다.
<총 이온 수 그래프>
중화 반응을 공부하면 다음과 같은 그래프들을 보게 됩니다.
위의 그래프는 중화 반응 문제에서 가장 기본이 되는 총 이온 수 관련 자료를 이해하기 위한 가장 기초적인 자료 해석입니다. 그러나 위의 그래프만 이용하여 모든 문항을 자유자재로 풀 수 없습니다. 그러니 위의 그래프만 암기하여 풀려는 자세는 지양하는 것이 좋습니다.
위의 그래프 모두 NT로 해석 가능합니다. 많이 알려진 명제들부터 차례로 증명하겠습니다.
1. 1가 용액에 1가 용액을 주입하는 경우 중화점 전까지 총 이온의 수는 일정하다.
1M NaOH(aq) 10mL에 1M HCl(aq) 15mL를 주입하는 경우를 생각해보겠습니다. NT를 작성하면 다음과 같습니다.
중화점 이전까지 즉, 용액에 들어 있는 H+/OH-의 종류가 바뀌기 전까지는 Na+는 구경꾼 이온이므로 변하지 않습니다. 따라서 제 1 명제인 “모든 용액은 전기적으로 중성이다.”에 따라서 경계선 아래에서 이온들의 비는 달라지겠지만 총 음이온의 개수는 Na+의 개수와 같은 10개가 나와야합니다. 따라서 중화점 이전까지 총 이온 수는 변하지 않습니다. 그러나 중화점 이후 즉, 용액에 들어 있는 H+/OH-의 종류가 바뀐 이후는 경계선 위에 알짜 이온이 추가로 들어오게 되므로 총 이온 수가 증가하게 됩니다.
2. 1가 용액에 2가 용액을 주입하는 경우 처음 들어 있는 총 이온 수와 중화점의 총 이온 수 비는 4:3이며 중화점을 기준으로 전과 후의 기울기의 절댓값 비는 1:3이다.
1M NaOH(aq) 20mL에 1M H2SO4(aq) 15mL를 주입하는 경우를 생각해보겠습니다. NT를 작성하면 다음과 같습니다.
2가 이온은 1개당 전하량이 1가 이온의 2배이므로 2가 이온 1개와 1가 이온 두 개의 전하량이 같습니다. 중화점 이전까지는 경계선 위에는 구경꾼 이온인 Na+만 존재하므로 경계선 아래의 전하량은 20으로 일정해야합니다. 2가 이온 1개는 1가 이온 2개의 역할을 하므로 2가 이온이 1개 늘면 1가 이온은 2개가 줄어야 일정한 전하량을 유지할 수 있습니다.
따라서 중화점 이전까지 총 이온 수는 2가 이온이 들어간 개수만큼 줄어듭니다. 중화점에는 처음 들어 있던 구경꾼 이온의 절반만큼 2가 이온이 들어있게 됩니다. 중화점 이후에는 1개의 2가 용액에 3개의 이온이 나오므로 총 이온 수는 2가 이온이 들어간 개수의 3배만큼 늘어납니다. 그러므로 1가 용액에 2가 용액을 주입하는 경우 처음 들어 있는 총 이온 수와 중화점의 총 이온 수 비는 4:3이며 중화점을 기준으로 전과 후의 기울기의 절댓값 비는 1:3입니다.
3. 2가 용액에 1가 용액을 주입하는 경우 중화점 전까지 총 이온의 수는 일정하다.
1M H2SO4(aq) 5mL에 1M NaOH(aq) 15mL를 주입하는 경우를 생각해보겠습니다. NT를 작성하면 다음과 같습니다.
중화점 이전까지 경계선 아래는 구경꾼 이온인 2가 이온만 있으므로 경계선 위의 이온들의 총 전하량은 10으로 고정되어 있습니다. 경계선 위는 1가 이온들로만 이루어져 있으므로 이온의 개수의 총합도 10개여야 하므로 중화점 이전까지 총 이온 수는 변하지 않습니다.
결론은 모든 중화 반응 문제를 풀 때 제가 이용하는 것은 두 가지입니다.
1. 모든 용액은 전기적으로 중성이다.
2. NT를 작성한다.
저도 다양한 스킬들을 모두 암기하여 풀던 때가 있었습니다. 그러다보니 계속 스킬에 집중하게 되고 새로운 문제를 풀 때 “내가 쓰는 스킬로 안 풀리면 어쩌지?” 늘 불안함에 시달렸습니다. 평가원 문제는 기본적인 자료를 바탕으로 새롭게 자료를 제시하므로 이런 스킬들에 의존하는 것에 의미가 없다고 느꼈습니다. 따라서 저는 가장 기본으로 회귀하여 저의 원칙을 만들었습니다. 탐구는 시험장에 들어갈 때 가장 단순하지만 내가 가장 잘 쓸 수 있는 도구 몇 개만 들고 가는 것이 좋다고 생각합니다.
단언컨대 NT작성과 제 1 명제만으로 모든 중화반응 문제를 풀 수 있습니다. 나머지 자료 해석은 다양한 문제를 접해보는 방법 외엔 없습니다. 일정 이상 문제들을 풀게 되면 어떤 문제라도 풀어 낼 수 있다는 자신감이 생기는 순간이 오게 될 것입니다. 그 때까지 저는 더 도움 되는 글로 찾아뵙겠습니다. 다음 글에는 실전 NT적용법을 보여드리겠습니다.
어떠한 방식으로든 읽어주신 분께 도움이 되길 바라며 마치겠습니다. 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ
-
직전 직무정지가 중학교 3학년 때였는데 이걸 몇 년 만에 또 볼 줄은 몰랐다
-
이재명대통령님지지합니다
-
做爱
-
언미영생지 백분위순으로 24수능 78 79 1 69 15 25수능 92 85 2...
-
세무조사로 쌓인거 많긴 했을듯 ㅋㅋ
-
중대는 술먹는 문화가 그렇게 없는데 연고대 다니는 친구들 보면 FM도 하고 뭐...
-
박근혜 때문에 문재인이 뽑혔는데 누구 잘못이냐 어디서부터 잘못된거냐?
-
ㅈㅂ...
-
뭔가 입에 딱 붙음 다른 이름들은 좀 그래
-
킬러를 20개 정도 만들면 상대적인 킬러가 없으니 킬러문항이 배제된다ㄷㄷ
-
국어 22수능 23수능처럼 비문학 다시 어려워지나요?;;; 가나형 부활하지않는이상...
-
조정석이었네
-
맞팔구 1
-
처음 정계에서 대선토론할 때만 해도 훠훠랑 콜라한테 존재감 밀려엇엇는데 계속...
-
역대급 핵불닭맛 뽑아낼 것 같은데 ㅋㅋㅋㅋㅋㅋ
-
인생 2년을 여기 갈아넣었는데 정말로 그렇게 되면 살 이유가 없음
-
첨부한 학습지에는 시선 방향이 은하 중심으로부터 왼쪽으로 설정되어 있는데, 학교...
-
있을까
-
탈조선 능력 안되면 중국어라도 배워놔야하나
-
유지될까?
-
어디가 더 평균 높음? 시대갤이 아무래도 더 높을라나
-
학과는 진짜 아무거나 상관없고 정시 100퍼면 돼요 컨설팅 받는 건 의미 있을까요?
-
그냥 합격사진에다가 이름, 수험번호 지워서 올리면 되나
-
이준석은 입지 넓히기 전에 탄핵되게 생겼는데 이러면 표 많이 못 받을듯 재매이햄은...
-
과고출신 있음? 5
갑자기 궁금해진 게 있는데 질문 하나만 하려고 없을시글삭
-
사람 댕많네 0
지하철 사람이 ㅎㄷㄷ
-
혼란한 시국에 1
뭐해야하지 ㅇㅅㅇ
-
저부터…
-
별의미없이 그냥궁금해서
-
재판 성실히 가야지
-
벌써부터 중국에 나라 넘어간다는 극단적인 생각 ㄴㄴ혓
-
이걸 직접 경험해보네
-
와우
-
나름 전교권에 열심히 준비했는데..심란하네요
-
탄핵안 가결 2
와우!!
-
미리 민주당 꺼무위키 3회독 재매이햄 꺼무위키 3회독 을 마쳣슴니다 열심히 빨아봐요
-
그냥여자옷사고싶은데 이거정상인가요?
-
중앙대 축하합니다
-
빨갱이와 반국가세력 척결
-
삼도극특 5
100p의 값을 구하라하면 답 50임
-
나그냥 합격통지서 만보냈는데 뭐더해야돼?
-
아건 아니쥐~ 윤 조 이 셋 다 들가라..고만..
-
*서울대 측 "계열 무관 가형 필수 지정"
-
무등비보단 그냥 급수 문제가 더 재밌고 삼도극은 테일러니 근사니 즈그들만 아는걸로...
-
[속보] 경호처, 한덕수 대통령권한대행 전담 경호대 편성 4
대통령경호처가 14일 윤석열 대통령의 탄핵안이 가결됨에 따라 한덕수 대통령권한대행...
-
서경대 덕성여대 2
공대입니다 서경대 덕성여대 붙었는데 어디갈까요 자취나 기숙사 살거라 거리는 상관업ㅅ어용
-
아무리 생각해도 나라넘기는거 밖에 안떠오르는데
읽어주셔서 감사합니다^^
좋은 자료 감사합니다~
-생지러-
의도 하지 않은 방향으로 흘러가는것 같군요^^
고맙습니다~
-물생러-