[물리학2] 빗면에서의 중력끄기
맨날 비생산적인 뻘글만 쓰다가 유익할지도 모르는 글을 써보는건 처음이라 읽기 불편할수 있음
일단 포물선 운동하는 물체의 변위를 초기 속도에 의한 벡터와 중력가속도에 의한 벡터의 합으로 나타낼수 있다는 사실은 너무 유명해서 다들 알고 있을거임
흔히 중력끄기라는 스킬로 알려져있음
근데 이걸 빗면에서 운동하는 물체에는 어떻게 적용할수 있을까?
경사각이 θ인 빗면에서 등가속도 직선 운동하는 물체에 작용하는 힘은 중력과 수직항력의 합력이고 가속도 gsinθ로 운동함
따라서 빗면에서 초기 속도 v로 운동하던 물체는 '중력가속도에 의한 벡터'를 다음과 같이 나타낼수 있음.
어떻게보면 너무 당연하고 간단한 사실인데 이걸 문제에 적용시켜보도록 하자
22학년도 수능 15번
이건 사실 그냥풀어도 개쉬운 문제긴 한데 위의 사실을 적용시켜서 풀어보겠음
물체 A를 p에서, 물체 B를 q에서 동시에 발사했더니 r에 동시에 도달한 상황임. 이때 A는 r에서 최고점이니까 A의 '초기 속도에 의한 벡터'는 빗면 위의 높이가 3h인 점 s까지 그을수 있음.
근데 두 물체가 같은 시간동안 운동했으니까 '중력가속도에 의한 벡터'는 둘이 같지 않을리가 없음. 따라서 sr' 벡터가 빗면에 수직임
그림에서 3hsinθ^2=h이므로 빗면의 각도 sinθ=1/sqrt(3)을 알수있고, 식을 잘 정리하면 v=sqrt(3gh)이므로 답은 2번임
이번엔 좀 어려운 문제를 풀어보자
지금은 내려간 옆1동네 출처의 어떤 N제 문제임
일단 (가)를 먼저 그려보자
이 문제 역시 동시에 출발해서 수평면 위의 같은 점에 동시에 도달한 상황임. 그러면 A의 출발점에서 B의 '초기 속도에 의한 벡터'의 종점 P까지 이으면 그게 빗면에 수직일수밖에 없음
마찬가지로 (나)에서도 동시출발 동시도착이니까 B의 '초기 속도에 의한 벡터'의 종점 Q는 그림과 같이 되어야 함.
여기서 중요한 사실 하나를 알수 있는데 닮음비로 잘 생각해보면 '중력가속도에 의한 벡터'의 크기 비가 (가):(나)=3:1임
따라서 시간비는 sqrt3:1인것을 알수 있음
이건 말로 설명하기가 좀 어려운데.. 대충 A의 출발점을 R, B의 출발점을 S라 하고, X는 Q랑 높이가 같은 점, Q'는 Q랑 같은 연직선 위에 있는 점으로 그림과 같이 정하겠음
그러면 SQQ'랑 SPR이 닮음비가 1:3이고, QQ'=XR=1/sqrt(3)v0t임
이번엔 삼각형 QPX를 보겠음. QX=sqrt(2)/sqrt(3)v0t, PX=2/sqrt(3)v0t니까 sinθ=1/sqrt(3)임
이제 빗면의 각을 구했으니까 상황이 매우 간단해졌음. sqrt(3)v0t=2h, 1/2gt^2=h니까 식을 잘 정리하면 답은 2번임
이 문제는 예전에 썼던 풀이(https://gall.dcinside.com/mgallery/board/view/?id=physics2&no=4629)가 있긴 한데... 너무 생략을 많이 한거같아서 다시 써봄
질문할거있으면 댓글 ㄱㄱ
사실 이 내용 이미 알고있었을 분들도 많을거같긴 한데 그냥 심심해서 정리해봤어요
올해 수능에서 물2러분들 다들 좋은 결과 있으면 좋겠습니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://orbi.kr/0003380751
-
화장하는 남자? 0
이거 쉐딩하는 전용 맞나요??
-
김기현 아이디어 수1.2 현강 숙제가 얼마나 되나여
-
캬캬
-
이유가 뭐냐고오오오오오옷
-
"침대"
-
냥대 에너지공학과 되나요?
-
합격예측 체험해봤는데 대성, 텔그, 진학사 다 안정을 말하는데 메가스터디 혼자 상향을 외치고 있네
-
슈퍼소닉 전에도?
-
현역 노배인데 김승리 올오카나 강기분 같은걸로 기출분석 방법만 배우고 혼자...
-
미적분에 도움되려나
-
그분도 최저만 맞추면 꿈의대학 가는거였잖아 그게 나잖아요 ㅠㅠㅠ 최저맞추려고 무한 N수중..
-
며칠전까진 할게 좃도없어서 심심했는데 운동도 해야하고 영화도 봐야하고 책도...
-
일부러 과행사도 동아리도 아무것도안들어갓는데 대형과가 아니라 쉽지않음 그냥 사람이랑 안엮이고싶은데
-
ㅈㄱㄴ
-
아침 점심만 먹고 저녁 안 먹기 ㅇㄸ? 두끼 먹는다고 머리 안 돌아가는 건 아니니까 걍 안 먹을까
-
현 고2이고 대학 합격한 것도 아니지만 질문해봅니다 현재 공대 희망하고 있는데,...
-
중3 겨울방학 때 가족들이랑 해외여행갔는데 거기서 뭐 연령제한? 확인받는게 있었음...
-
40대 이전 변호사들은 로스쿨 출신 변호사로 보는게 맞나요?
-
오프닝 노래까지만듣고 그냥 잤음... 오늘은 꼭 1화 다 봐야지....
-
나는과연 호감인가 10
-
카르텔 ㄷㄷ
-
양심고백 17
오늘 애니 한 편도 안 봤음
-
중독돼버렷
-
인싸 모자 안에서 머리카락으로 조종하면 사실상 내가 인싸인거임뇨 노벨상은 확정인 거임뇨
-
미친척하고 숙대 2
영어 2인데 상향으로 미친척하고 숙대 넣기도 무리일까요…
-
백종원 죽는다
-
미적 76 2컷 4
공통 5개 틀리고 미적 1개 틀린 76인데 2컷 안될까요?
-
못참고 사버렸다 2
2029 수능...봐야겠지?
-
영어 조교 0
교재 검토 같은 일을 하는 조교는 보통 언제 뽑나요? 영어로 유명한 팀은 어디가 있을까요?
-
올리버 색스 6
대단하심.. 제가 신경과/신경외과에 관심을 가지게 된 계기이기도 한 분 나중에 저서...
-
미적이랑 지구 1컷에 대한 얘기가 많은데 뭐가 더 현실성이 없는지 개인적인 의견...
-
화미물지 97 84 44 41 (원점수) 영어는 4등급입니다. 추합가능할까요?
-
생1 지1이랑 각각 비교해서
-
평일에 잠을 충분히(6시간)잤음에도 불구하고 진짜 빡시게 공부한 날에는 너무...
-
와 이 돈주고 아이스크림을 먹는다고? 아이스크림 맛도 일반 요거트 아이스크림이랑 별...
-
학교에서 배우는 윤사는 그럭저럭 할만한데 생윤은 얼마나 어려움? 더 자세하고 지엽적인가..?
-
백건아 인스타에 1컷 46으로 예상하던데 46으로 떨어질 확률 있을까요??
-
훠훠..안 나오면 자살할궙니다..쩝쩝
-
뇨씨들 처단한다 9
오타아님요
-
현역때 본 지문을 3번 이상은 푸는
-
키작남의 삶은 서글프뇨..
-
보통 몇 지문 읽나요?
-
심지어 88에서 갈리는게 주류의견인듯뇨
-
다군에 쓸게없음 3
7칸 아니면 3칸임 ..
-
휴가 짤린뻔했네요
-
대학을굳이가고싶지가않아져요 그냥평생을집에서살고싶어요
-
구글에 이름만 쳤는데 클리앙 디씨 펨코를 불문하고 게시글이 나오는걸까.. 심지어...
-
데칼코마니 전형으로 서성한도 ㅆ가능 아님?
진짜 개고임;;
현T 수업 들으심?
아니요
귀요미!귀요미!귀요미!
어이x
그는 신인가?
않입니다..
이..이게머노
몰?루
오 26됏다
와 이거 물올때 많이 했었는데..7ㅐ추 벅벅!
물올에서도 많이 쓰이는 스킬인가요?
기억을 잃었어요 엉엉
역학: 힘에 대한 학문 -> 힘 분석만 해도 반은 먹고 들어감
을 단적으로 잘 보여주시네요 잘봣습니다 ㅎㅎ
이 스킬 오랜만에 보네
물2게이야...
물2러 국민스킬이죠
올해도 물2해야될지 물1으로 빤스런할지 고민이네요...ㅋㅋ
혹시 첫번째 문제에서 3h가 갑자기 나온게 이해가 안되는데 설명 해주실 수 있나요?