칼럼) 수학의 생각의 회로_시험만 보면 떡락하는 당신.
*경험담과 극복 방법, 그리고 수학을 어떻게 공부해야 하는가를 써놨습니다..!
제가 시험만 보면 작살났거든요.
수식때문에, 사진으로 붙여넣었습니다..!
중간에 예시로 나와있는 문제는 가볍게라도 고민하고, 뒤를 봐주세요..!
오늘도 26 부탁해요..!
혹여나, 시험에 대한 트라우마가 있으시다거나 고생하셨다면, 질문 주세요..!
너무 힘들었어서 그 마음 압니다..
힘든 입시판에 오셔서 혹은 입시판에 남게 되서.
응원보다는 걱정이 앞서고,
힘들었던 시간을 알아서, 얼마나 힘들지 알고 무작정 잘될거라고 말하기에는 험난한 길입니다.
그래서 19, 20살, 혹은 그 이상의 시간을 낭비하지 않으시도록
이왕 보내는 거 값질 수 있도록, 여지껏 글 썼고 앞으로도 써볼 생각입니다.
물론 이런 식의 '공부를 공부하는 내용'이거나, 공부하는 법에 대한 칼럼도 중요하지만,
좀 더 자세한 내용(현재는 국어 칼럼들)도 기대를 저버리지 않을 겁니다.
화이팅하고 또 달려요.
이왕 공부하는 거 잘해보자고요!
0 XDK (+10)
-
10
-
현강 들으면서 공부하고 싶은데 집에 사정이 좀 안 좋아서... 돈 벌면서...
-
완강까지 8강남았다 헤헤
-
네 0
키스시요까
-
100들어ㅑ더ㅣ나?
-
뀨뀨 5
뀨우
-
무물 아는선에서 답변해드림 공군입시는 잘 모름. 그외에 궁금한거 질문 고고 전역 D-36
-
함수에서 상수구간 껴있는걸로 푸는거 이 문제가 혹시 원조임? 241020도 비슷한 느낌이던데
-
나도 그대학 입학처 취칙해서 개꿀이나 쳐빨고싶네 ㅋㅋ
-
아빠 옆에 계시고 내가 운전면허 따서 운전하는데 아빠가 주유소로 들어가라고 하심....
-
인하대 예비 0
이거붙나요?
-
ㅋㅋㅋ 병신들 4
-
난 단과대 학생회 선배한테 만갤이랑 빡갤하는거 들켜봄
-
오지훈vs이훈식 0
누가 더 좋음? 오지훈 유자분 좀 들어봤는데 올해 다시 들을지 아님 이훈식 들을지...
-
서강대=동국대 0
둘 다 조발 안 하네
-
인하대 컴공 0
예비 26번인데 추합가능할까요? 작년에는 예비54번까지 돌았는데 올해 모집인원이...
-
전담기기 추천좀 5
젤로 발라리안맥스 아스몬 써봤는데 젤로는 맛표현, 밀어주는 힘? 같은게 너무 약하다...
-
스카이뱃 역순이네 그와중에
-
피램 구매 완료 0
2025 버전 싸게 올라와서 당근으로 구매 완료 독서 김승리 문학 피램으로 목표 달성해야지
-
데이트할래? 2
좋아
-
쉬운데 호흡이 긴 문제
-
그런거냐
-
나쁘진 않다는데 어떡하지
-
삼룡이긴 한데.. 증원도 그렇고 해서.. 최악의 상황이면 여기에 갈수도 있어서 물어봐요
-
서강대 뭐해~
-
고대식 650언저리면 18
어디라인임? 서성한이 그쯤되나? 그리고 보통 저점수로 고대 낮과되나요
-
아 야쓰 마렵다;; 12
이렇게 하는 건가요?
-
노짱님 0
???
-
오르비에 종종 보이는 비호감 유형이 있는데 1. 부모님 직업or재력 자랑+이성한테...
-
정신병이 맞던걸까?
-
ㄹㅇㅋㅋ
-
어렸을 땐 잘했으니까 그 모습만 기억하는 친구들은 기대치가 나보다 높아짐. 그게 나한텐 부담이 됨.
-
694 들고 다른 과도 아니고 영문 넣었다가 떨어지고 결국 복학 아니면 다른 과 재...
-
??
-
글 다 밀었다 5
-
무엇도 해줄 수 없는 내 맘 앞에서
-
현역 고3 올라갑니다 수1,수2 분명 작년에 했었고 자이스토리 다 풀정도에 킬러빼면...
-
여장 처음하는데 평가좀 13
24학년도들어와서는 수열문제의 포멧자체가 달라진거같음. 전에는 약간의 논리적 발상이...
-
여긴 패션시티 6
-
어? 10000회독 해보신 분 있나요 ?? 어어?
-
그때가 진짜 황금기였던듯… 칼럼러, 고수들이 넘쳐났던
-
홍익대학교 새내기 where~~~??? 홍익대 합격생을 위한 면맛집 정리!!!!!!!!!!!! [홍대25] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
극악무도한 반역자는 척결이답이다..
-
나만늦는거같아 7
친구들은이제졸업반인데난.
-
올해 신설 모집단위고 진학사 마지막날 4칸이었는데 혹시 추합끄트머리라도 걸릴까요?
-
ㅈㄱㄴ
-
아주대 자전 0
아주대 자전 지원했는데 진학사 점공에서 181명 중에 150등인데 점공계산기 돌리면...
-
다군 인공지능은 예비11번
-
폰겜추천좀요 11
난이도 낮고 좀 가볍게 할만한걸로 포커를 해볼까
-
인하대 합격 2
항우공 드가자~
-
내가 서강대를 뜬다 걍 중대간다 ㅅㅂ
나만 왜 블록체인 안 걸리죠.. 맨날 누르는데...
칼럼 대방출 ㄷㄷ
열심히 읽을게요
정말 열심히 써서 애착이 가는 글입니다..! 잘 부탁드려요,,
칼럼 감사합니다. 잘 읽을게요~~ 국어 칼럼도 감사합니다.
모든 과목에서
풀은 문제수 = 깨달음의 수 란 공식을 적용해야하는 군용... 정말 맞다고 생각합니다. 언젠 쉽게쉽게 풀렸던 문제도
다시 풀면 안풀리는 문제도 많았으니까요,, 잘 읽었습니당
저 말의 뜻이 참 전달하기 어렵네요 ㅜㅜ 전달이 됐길 바랍니다..! ㅎㅎ
선스크랩 후 정독
스크랩만 하시면 안돼요.! ㅎㅎ
하루에 2개라니.. 오늘 밤은 이거다
와 ㅁㅊ
국어도,수학도 저와 같은 생각을 하시는분께는 좋아요와 팔로우 ㅎ
이정도면 돈 받고 읽어야 할 수준이네요
이런 칼럼 많이 부탁드릴게요 ㅠ
감사합니다. 방향성을 가지고 양치기를 하면 괴물이 된다는거군요ㅎ
그렇죠..!
좋은글 감사합니다!
와 근데 어떻게 N제한권을 하루만에 다푸나요..? 교육청기출 두장푸는것도 2시간걸리는데..
헉..
와진짜 ㅜㅜㅜ 칼럼 읽으면서 제가 지금까지 아이디어에 의존한 것 같다는 생각이 들어요 ㅠㅠㅠ 혹시 수학 개념은 어디까지 파고드는게 좋을까요..? 예비 고3인데 개념 정말 확실히 잡고 싶어서요.. 개념공부는 증명 위주로 설명이 가능할 정도로만 공부하면 될까요?
개념은 확실하게 잡는게 맞아요. 교과서 개념을 실전 수능 개념까지 확장시켜서 잡으셔야 합니다…! 퍙균값 정리 같은 게 실제로 어디에서 쓰이는가 했을 때 인티그랄 a부터 b까지 f(x) 적분=0이면 f의 부정적분을 F라 할때, F(b)-F(a)=(b-a)f(c)이므로 f(c)=0인 c가 a<c<b를 만족한다. 이런 식으로 탁탁탁 나와야 합니다…! 평균값 정리 같은 경우 많은 학생들이 교과서에서만 보고 문제에 안 쓰는 경우가 많아서요…! 개념이 실전의 근간임을 일고, 실전 개념으로 전환해 공부하셔야 해요..!
감사합니다!!!
질과양은 동시에가야하는군요...
하루에 어마어마한양을푸는게아니라...
국어가 이런데 어떻게
해야할까요
국어는 재수하며 얻은 것 이러는 게시물과 국어 칼럼들에 써놨으니 보시면 됩니다..!
이 생각의 회로라는 것은 자기가 고민하거나 헷갈리는 문제에 한해서 만드는 갓인가요? 또, 따로 노트같은 곳에 정리해놓고 암기하는 식으로 하셧나여?
워낙 평소에 잘 푸는 문제는 이미 생각의 회로가 잡혀있는거죠.! 전 사실 문제 틀리면 실수로 틀리더라도 그 실수를 없앨 회로를 일일이 만들었네요,, 그래서 포스트잇을 엄청 썼었어요..! 포스트잇 나중에는 다 떼서 노트에 붙였는ㄷ 따로 외우진 않았어요 포스트잇 만들면서 머리에 각인이 되거든요! 대신, 정말 중요하다고 생각하는 건 옥스포드 노트 한쪽에 정리해서 쉬는시간에 스윽 읽으며 수능 봤네요!!
헐크 공부법 저두 한번 해볼게용..!
이런 사람이 에피 달고 의대 달겠구나
하루 한권... ㄷㄷ
와 잘읽었슴다ㅠㅠ.. 감사합니다 덕분에 방향 정했어요
뒷북이긴 한데 그래서 이번 수능 12번만큼 기출 반영 심하게 한 문제 없는듯요 ㅋㅋ
제가 현역때 왜 망했는지 알것 같네요
생각해보니 연습할 때 실전에서는 어떻게 풀것인가에 초점을 두고 생각회로를
연습했어야 했는데 '풀었으면 된거 아니야?' 라는 안일한 생각을 했던거 같네요
좋은 글 감사합니다 :)
이 글 동생한테도 보여줘야 할 것 같네요
저도 계속 후회한 게 현역 때 이걸 몰랐다는 사실이 원통해 다른 분들은 그러지 말라고 글을 쓰네요 알아봐주셔서 감사합니다 :)
개쩐다
감사합니다. 전 3등급인데 1등급 친구들도 제 풀이보면 "와 너 이문제 개잘풀었네 어케 생각했냐?" 이런적이 가끔 있었는데 이게 독이었네요
수학 1일 1~2 실모 푸는 요즘.. 다시 생각해보게 되는 글이네요
뭔가 저렇게 깨달음을 정리해놓는게 오답노트의 상위호환이라는 느낌이 드네요
그러면 오답노트는 따로 안하셨나요?
포스트잇의 깨달음이 일종의 제 오답노트였다고 생각하시면 될 것 같습니다!
이미 모든 경우에 대해 회로가 존재하는 수업을 듣고 그걸 체화하는 연습을 하는 건 어떻게 생각하시나요?
그런 수업은 찾았는데,
본문을 읽다보니 회로 자체를 만드는 경험도 중요하다는 생각이 들더라고요
물론 수업에 플러스 알파로 저만의 회로를 첨부하겠지만 스스로 무에서 유를 창조하는(회로생성) 경험을 꼭 해봐야 할까요?