합성함수의 수학적 의미
올해 수학 정도는 그냥 무지성으로 문제 풀어도 다 맞거나 하나 틀려서
무지성으로 풀다가 탁 막힌 문제가 하나 있는데
f(f(x))=f(x) 관한 문제 였는데
이 합성함수가 갖는 의미는 무엇인가요?
예를들어
f(g(x))=x 면 f,g 는 역함수 관계이다 이런거처럼 의미를 해석할수있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
작년에는 목에 칼이 들어와도 여대는 절대 안된다 였는데 공학공대 다녀보니까 절실하게...
-
이대 논술 뭐임 0
시험 시간 100분인데 입실 후 퇴실하는 시간이 4시간인게 맞나요? 예전 응시자...
-
내년에 칸타타님 컷 예측 안할듯 ㅋㅋ 올해만큼 물어뜯었던 해가 있었나..
-
얼마나 행복할까 힘든 시기만 지나면 돈 잘 벌고 명예 있고 결혼연애 시장에서도...
-
17 19빼고 나머지 다맞아도 2등급인데 생1 하겠다는 사람이 많네요
-
이거 괜찮음? 2
책 샀는데 배송이 안 와서 오늘 유빈이로 쓸거임
-
패스 8일남았노
-
어디가 낫나요?
-
한완기 0
한완기 언제나오나요
-
대학 예측 0
작년 54366 (화작 미적 생1 지1) 올해 33334 (선택과목 작년과 똑같음...
-
보통 메가T 메인커리 첫강의 개시일이 언제일까요?? 0
가령 현우진t 뉴런, 강민철t 강기본, 과학t 개념강의등등 12월은 돼야될까요??...
-
08입니다 국어 영어 조밥이구요 학평 3등급입니다 수학은 천재적인 재능이 있습니다...
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
국어 모고를 1년치 다 사면 대략 몇개정도 오나요?
-
ㅈㄱㄴ
-
긍정적인 마인드로 356일 공부하기 5일차 오늘의 소확행 : 중국집 불고기잡채덮밥...
-
잘 살고 있다. 4
-
문학은 확실히 민철티한테서 얻어갈 게 많고 파이널이 승리쌤이 더 좋다는 말이...
-
일욜에 조진다
-
저도 이제 할머니네요
-
97 98 1 98 98 인데 지방약대 4~5칸 뜸..
-
그 수많은 밈들이 영상으로 어떻게 탄생될지 몹시 궁금함
-
1타강사가 미적만점자 700이하라고 인스타에 대놓고 올렸는데 그럼 현우진이 바보인거임..?
-
과탐 공부량 0
물1/지1 중에 노베기준 1등급 공부량 누가 더 많나요?
-
할거없다 1
지2 인강 들으러감..
-
실패수기 0
다시는 떠올리고 싶지 않은 기억이었지만 용기내서 글써봅니다..저는 지방에 살아서...
-
지금 오버워치 월드 파이널 시작했어요 옵치 리그 좋아하시면 보셈
-
유메 0
유메
-
동사는 일단 무조건할건데, 사문할지 세사할지 고민임 동사 세사가 시너지 좋다고하고...
-
맞팔하실분 0
헤헤
-
뭐함?
-
캬 2
-
컨설팅 할?말? 0
컨설팅 받고 가능성 높은 높과 쓰기(원하는 학과까지 가고 싶음) vs 컨설팅 없이...
-
기출 돌리고 삼극사기 사서 하는 것도 괜찮겠죠....? 일단 개념기출이 엄청 오래...
-
고려대 세종캠 약대 (지역인재) 경쟁률 64:1 미기확 다봄 미적 1등급 고정이고...
-
시작하기에 앞서 다 걸고 바이럴 아닙니다 ㅇㅇ.. 작수 독서 5틀 32m->올해 다...
-
<< 신 투투해야겠지?
-
이거보다 꿀일수가없음
-
재수 하려는 문과 학생이고, 올해 미적분으로 응시해서 선택에손 28 29 30...
-
캬
-
빙과 봇치 마녀의 여행 3대 레전드 결말 GOAT
-
2025 국어 언매 선택 원점수 91 97 97 백분위 99 96 99(추정) 인데...
-
라면먹고싶다 0
살찌니까참아야해...
-
수능 이때까지 3번봄. 중상위 사범대 다니는 중인데 메디컬 갈 생각으로 한 번...
-
대학 이름으로 드립을 치기 좋다는 건대 곧 훌리들이 몰려올 시즌이라는 건대 나한테...
-
과탐 탐구 선택 0
생1은 끌고 가고 지구과학은 도저히 못하겠어서 생2를 할려고 하는데 괜찮을까요
-
기상쌤 커리중 이것이 알짜기출이다 이 강좌 하면 따로 마더텅이나 자이스토리 기출 안해도 괜찮나요?
-
여자 기준이여
-
전자 쓰기엔 좀 힘들거같아서 자전으로 생각중인데 가능할까요?
코런건 없어용~
밑에식은 항등식이고 위에식은 방정식이에용~
방정식인건아는데 그 근이 갖는 특징 예를들어 f(a)=a 이면 성립하듯
f(x)=x 위의점 이거나 또는 ~~~ 이랗게 특징을 물어본가에여
f(x)=u로 치환하면 f(u)=u를 만족시키는 u에 대해 f(x)=u인 모든 x가 근이지요
위에가 항등식일경우 증가하는연속함수는 저항등식을 만족하는 함수가y=x뿐이고
감소하는연속함수는 f가무수히많은데 이함수들은 전부 자기자신이 y=x대칭함수입니다
방정식일경우 치환후 진행
걍치환 ㄱ
f(f(x))=f(x)가 방정식을 말씀하시는 거면
두 함수 y=x, y=f(x)가 만나는 x에 대해서 대입해서 식의 값이 f(x)가 되는 다른 근도 방정식의 근이 됩니다.
모든 실수 x에 대해서 위의 조건이 성립하고, f(x)가 역함수가 있다면 f(x)=x 입니다.
역함수가 없다면 그냥 조건 그대로인 함수 입니다.
역함수가있다고 y=x로 단정지을수없지않음?
증가하는함수여야될텐데
왜요 그냥 양변에 f inverse 합성하면 되는데
천잰가
까마득히옛날에 한기억이왜곡된듯
역함수는 일대일함수가 전제조건이라 역함수라 할 수는 없습니다만, 증가구간과 감소구간으로 흐름을 분리해서 보면 각각을 역함수관계로 해석해서 근을 구할 수 있습니다.