확률질문 ( 초고난이도 )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올해는 수험생 신분으로써 입시 상황에 맞게 의대에 합격한 거고 내년에는 의대생...
-
ㄱㄱ
-
피하면 되겠지?
-
.
-
가끔 눈팅하고 질문 올리는 사람인데요, 읽다보니 대충은 짐작은 가는데 정확히 이해가...
-
맞팔9 3
-
잇나여 폰 너무 해서 현타왓는데 ㅋㅋㅋ 시계 잇으면 안불편함까
-
??
-
배고파 오늘 아직 암것도 안 먹음 ㅠㅠ
-
물리 1컷 48 지구 1컷 44 여파가 클까
-
나만 홍머병인거냐
-
국어 강사 추천 3
국어 강사 추천 해주세요ㅠ 노베이스고 고1 모고는 2~3 진동해요 강기본 문학,...
-
그림 컨셉
-
최대한 뭐 업음?
-
https://link.yeolpumta.com/P3R5cGU9Z3JvdXBJbnZp...
-
핑크게이아닌가
-
ㄷ선지가 이해되지 않습니다. 왜 k가 2보다 크거나 같아야 미분가능하나요?
-
확통 2컷 2
84 2 가능한가요 제에에에발... 모든 사이트가 가능하다는데..?
-
1. 24수능의 접수자 대비 응시자 비율 계산 24수능 응시 인원 58520 접수...
-
발표3개와 시험1개를 2일동안
-
서울대치대.
-
주례를윤서인이슴
-
챗지피티없는 대학생활을 상상할 수 없다.
-
고대 화학과 가능할까요??
-
-
뭐가 더 할만함??
-
확통 2컷 2
85 기원 1일차
-
하.. 군대가 진짜.. 다시 나와서 이만한 알바 구하기 힘들듯..
-
해외 거의 안다녀봐서 잘 모르는데 패키지로 갈듯
-
2종보통이고 오늘 내일 연습 하고 수요일에 시험인데 유튭영상 돌려보면 되려나
-
미적은 쎈이랑 검더텅 하고있구요 이번 수능 공통 풀어봤을때 60분 잡았을때 22번...
-
[속보]윤 "백종원 같은 상권기획자 1천명 육성…5천억 지역상권육성펀드 조성" 5
후속기사가 이어집니다
-
참고로 2번선지는 존재하지않어요 1번선지=미개지-화자가 지향하는곳이라고 생각하고...
-
의대생분들 질문 16
의대 요즘분위기 어떤가요? 돌아올분위긴가요 아님 다 1년더 투쟁할 각이신가요?
-
사진은 대성이고 메가기준 국어 백분위 95 생윤 96이용 과 상관없이 어디까지...
-
올해 가도 한번 더한다 연대치대성적받아놓고 수시납치당했으니 연대치대갈때까지...
-
대입정신병 좀 치료되는듯 삼반수 생각도 좀 줄어드는 것 같고 이제 좀 주체적으로...
-
님들 이과 입시에서 수학이 그냥 압도적으로 중요함? 4
국어 탐구 영어 못봐도 슈학 잘보면 혜택 큼?
-
짤 완성 6
-
나정도도수학과외할수있을듯 저격은아닙니다~
-
어디서 끝내야 제일 좋았을까
-
수학 질문이요 1
한완기 살때 테마북도 같이 오는건가요? 아니면 따로 사야하는건가요? 현우진 정병호...
-
죽나요
-
욕설 불편하셧다면 ㅈㅅ인데 진짜 레전드 ㄷㄷㄷㄷㄷㄷㄷㄷ
-
농어촌 가능합니당
-
그것은 구운미쿠
이거 그 피자먹는문제랑 유사유형같은데
문제가 없네여...
아 새로고침 하니까 뜨네요 큐ㅠ
4/7 아닌가요?
11아닌가여 2명잡아주고 어거지로 품 ㅠㅠ
답이뭔가요?ㅋ
이거 그 당첨자 한명이 뽑는순서대로 분류하면 되요
첫번째로 뽑을경우, 2번째로,... 이하생략 이런식으로 풀면 답나오는데
계산이 그지같아서 안풀래요 ㅋㅋ
전 답이 다르게 나오네요 윗분들과 ㅠ
이거 여상진인데 미친문제임 수능에 절대안나오니까 풀지마셈 ㅋㅋ확률의 개념 제대로 모르면 절대 못품
답이 뭐에요?
답이 뭔가요?ㅋ
이거 고1 때 선행하면서 본 기억 나는데... 예전에 나온 문제 아닌가요?
정답 11 아닌가요?>?
당첨자 없는경우: 24/63
당첨자 1명인 경우: 36/63 = 4/7
당첨자 2명인 경우: 3 /63
이게 왜 미친문제죠 풀이도 깔끔하게나오는데
11임 XX / XO / XO / OO / OO 라고 두고, 1번부터 차례로 뽑을 확률 쭉 곱하고
XO부분은 OX될 수 있으니까 4 곱해준다음
XX / OO / XO / XO / OO 이렇게 순서 섞일 수 있으니까
5*4C2 더 곱하세요
4/7 입니다ㅋㅋ
제풀이좀 봐주세요;;
빨간 공을 배분하는 경우의 수는,
1. 두 사람이 각각 2개를 배분 받는 경우(당첨자 총 2명)
2. 한사람이 2개, 나머지는 두 사람이 각각 1개씩 배분 받는 경우(당첨자 총 1명)
3. 네사람이 각각 1개씩 배분 받는 경우(당첨자 총 0명)
이렇게 케이스를 나누어 각각 계산해보면,
1. 5명 중에 당첨자 2사람을 뽑는 경우의 수 5C2 = 10
2. 5명 중에 당첨자 1명을 선택하고 나머지 4명 중 빨간공 1개를 받는 2명을 고르는 경우의 수 5C1 x 4C2 = 30
3. 5명 중에 빨간공을 1개씩 받는 4명을 고르는 경우의수 5C4 = 5
따라서 당첨자가 1명일 확률은 30/10+30+5 = 30/45 = 2/3이므로 a+b = 5
----------------------------------------------------------------------------------------------------------------------
제가 계산한 전체 경우의 수 10C4를 논리적으로 접근하면 다음과 같습니다.
(제가 이렇게 접근했다는 것이 아니라 참을 검증하는 과정이라고 보시면 되겠습니다.)
우리는 공 10개를 일렬로 5묶음으로 배열한 전체 경우의 수를 먼저 상상합니다.
(1,2) (3,4) (5,6) (7,8) (9,10)
이 때, 전체 경우의 수는 {10C2X8C2X6C2X4C2X2C2}X2^5=113400X32 라고 볼수 있죠.
쉽게 생각하자면 5사람이 각각 10개의 자리 중 2개로 된 한 묶음을 선택한 후 각각
자기가 뽑은 공을 놓을 때 좌우를 바꾸는 2가지를 고려한 것이라고 보시면 됩니다.
이렇게 해서 배열된 (1,2) (3,4) (5,6) (7,8) (9,10) 의 임의의 배열 중에서
흰공 6개가 서로 자리를 바꾼 6!을 하나로 보고, 빨간공 4개가 서로 자리를 바꾼 4!를 하나로
보면 113400X32 나누기 4!X6! 이 되죠. 이 답이 바로 10C4 즉 210입니다.
이것은 결국 쉽게 보자면 원래 주어진 10개의 자리 중 빨간 공이 놓을 자리 4군데가 바뀌는
경우의 수를 각각 다른 것으로 보는 것입니다. (이 경우 분모의 210가지 각각의 경우는 애초에
생기는 모든 임의의 배열인 113400X32 가지 중 각각 4!X6! 가지의 경우를 하나로 생각하여 축약된 것이므로 같은 빈도를 가지는 것은 자명합니다.)
----------------------------------------------------------------------------------------------------------------------
그리고 애초에 제가 처음 보낸 답변 중 오답에 분모를 45가지로 계산한 경우가 있다고 했는데
이 사고는 다음과 같습니다.
당첨이 없는 경우 : 4명이 빨간공 1개씩 받는 경우 5C4=5
당첨이 1명 있는 경우 : 1명이 2개, 2명이 1개씩..5*4C2=30
당첨이 2명 있는 경우 : 2명이 2개씩 5C2=10
..30/45=2/3...
이 때 분모를 5+30+10=45로 계산하면 오답이 되는 이유는 저 45가지 모두 동등한 빈도로 고려되지 않기 때문입니다. 이렇게 되는 가장 큰 이유는 흰공과 빨간공의 개수가 다르기 때문입니다. 만약 흰공도 5개 빨간공도 5개라면 위의 풀이가 맞을 겁니다...
실제 예를 들어보자면 A,B,C,D 4명이 각각 빨간공 1개, 흰공 1개를 가지고 E가 흰공만 2개 가지게 되는 경우는 당첨이 없는 5가지 중 1가지이기 때문에 1/45가 되어야 하겠지만 실제 경우의 수를 계산해보면 전체 경우의 수는 113400 중에서
(6C1X4C1)X(5C1X3C1)X(4C1X2C1)X(3C1X1C1)X2C2=8640 가지이기 때문에 1/45가
나오지 않습니다.
(A가 흰1빨1)X(B가 흰1빨1)X(C가 흰1빨1)X(D가 흰1빨1)X(E가 흰2) 이라고 보시면됩니다.
----------------------------------------------------------------------------------------------------------------------
개인적으로 쪽지로 질문받은 김에 여기도 풀이를 올립니다.
일단 답은 4/7이 맞습니다.
일단 경우의 수로 분모 및 분자를 사고합시다.
현재 주어진 공 10개를 2개씩 5묶음으로 나누게 되므로,
(1,2) / (3,4) / (5,6) / (7,8) / (9,10)
이렇게 생각했을 때, 분모의 경우의 수는 빨간공 4개를 임의의 4곳에
넣는 방법입니다. 따라서 10C4=210 으로 둡니다.
이 때, 우리가 원하는 사건은 빨간 공 2개를 다섯 개 중 한 묶음에 넣고
나머지 2개를 남은 네 묶음 중 두 곳에 이웃하지 않게 넣으면 됩니다.
계산해보면 5C1×(8C2 - 4)=120 이 됩니다.
(5묶음 중 빨간 공 2개를 넣는 한 묶음을 선택하는 방법)×(남은 8 곳중 임의로 두곳에 넣는 방법 - 어느 한 묶음에 두개가 동시에 들어가는 경우) 입니다.
따라서 120/210=4/7이 되어 답이 4+7=11이 됩니다.
답글에 보니 2/3으로 계산한 분이 있던데, 이는 수학적 확률에서 모든 근원사건이 같은 정도로
기대되어야 한다는 정의에 어긋나는 상태로 계산한 결과이므로 오답입니다.
(즉, 전체 경우의 45가지가 모두 같은 확률을 가지지 않는 다는 뜻입니다.)
잘 이해가 안간다면 먼저 수학적 확률의 정의를 다시 찾아서 공부해보시고, 이해가 안가는
부분을 질문해주세요 ^^ (아 그리고 정확히 얘기한다면 최근 수능 시험의 기조상 확률문제가
그리 어렵지 않기 때문에 나올 가능성이 낮다는 것이지, 교과과정 외의 문제는 아니므로 수능에
나올 수 있는 문제입니다.)
심각한 오류가 있네요. 님말대로 빨간공 4개를 10개의 셀에 집어넣는 것이라 생각하면, 1,3,5,7과 2,4,6,8을 다르게 보는 것인데 이게 말이 됩니까?
맞는것가텐요 죄송함니다