가형 수능완성 실전편 4회21번 질문입니다..
답은 나왔거든요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
패스 반뗑할분 0
제가 구매햇어요!
-
졸린기상 5일차 1
오늘도 힘내봅세
-
탐구 하나는 생1할건데 나머지 하나를 못정하겠습니다 투포좀요
-
그릇 새로 삼 0
오늘부터 1일1컵라면 하기로 했다
-
연고대 0
07이고 현재 내신 2점대 초 정도인데 정시로 갈거여서 기말부터 버리려고요 생기부도...
-
아무 치대나 가능할까요..?
-
공부좀 불안한 상태로 그만하고 싶음
-
제 주변 의반 친구들은 그냥 안넣고 성적표 기다리길래.. 다른분들은 어떤가요
-
숭배해라 대 르 비
-
ㅈㄱㄴ
-
블부이 기상 4
졸려
-
기상 완료 오늘도 ㅍㅇㅌ
-
의대에서도 본1 내신망하면 휴학하고 내신 리셋했는데 1
고1도 내신 망하면 그냥 리세마라 하는게 재수 삼수 하는것보다 백배는 나아보임...
-
킹받네 지도 내년에 고3이면서 ㅠ
-
오르새쌤 인강 0
커리큘럼 영상이랑 문풀 강의 살짝 보고 맘에 들어서 수강하려는데 듣기로는 인강...
-
킹 덕 여 대
-
의사증원에 반대하는 국민들에게 개돼지같다고 하는게 잘못된 이유 0
개돼지가 조스로 보임?
-
내가 국민들의 생명이 달린 응급실을 버리고 해외여행 가는 이유 0
우리 뽀삐 산후조리 해야함
-
국어 주간지 0
고3 평가원 모고치면 2정도는 나오다가 고중에 아예 공부를 놔버려서 3~4 정도...
-
기차지나간다 2
부지런행
-
생투 0
지투로 바꿀까요 말까요 근데 염기조성 코돈이 일년 더한다고 느는 유형은 맞음??
-
ㅇㅂㄱ 2
또 자고왔어요
-
국숭 이상은 꿈도 안 꾸고 있는데 혹시 이 정도 성적이면 어디 정도 갈 수 있을까요...
-
미치겟네 5
왜잠이안오지
-
의사들이 무슨 감사한 의사 명단을 만들어서 교묘하게 사직, 휴학에 동참 안하는 분들...
-
야식 먹을까 1
그보다 아침에 가까운데 벼고프당
-
안자는 사람 3
ㅇㅇ
-
낙서 재밌음 1
공부보다 백배
-
봐주셔서 감사합니다.
-
기하 사탐러라 미적, 물리를 안했는데 산업공학과에서 학점 따기 많이 버거운가여..?
-
아이고 사람살려
-
잔다 2
르크
-
시대는 6%라 하고 메가는 13%라는데 차이가 너무 심한거 아닌가
-
수능도 5과목인데 비슷한거 아님?
-
기차지나간당 10
부지런행
-
잘 잤당 2
일찍 일어나쏭
-
이거 치 가능? 7
어디든 제발….
-
이지영 풀커리 타는건 비추인가요?? 대성 끊을거라 임정환 이지영 중에 고민중이에요
-
왜내가하면그맛이안나지
-
의뱃 색도 바꿔주면 안되나??
-
얼버잠 1
다들 굿밤
-
지금 굳이 자려고 애쓸 필요는 없는듯
-
캬 4
ㅁㅌㅊ?
-
개구라입니다 죄송합니댜 ㅠㅠ 예비 고3 국어 커리 평가좀여 국어 : 독서(김동욱)...
-
손바닥으로 하늘 가리는거 개잘하네;; 확실히 동덕여대보단 똑똑하다
-
잠이 안옴 4
-
원랜 미적이라 확통쌩노베인데 여러 요인 따지다보니 확통에 마음이 가서 그냥 지금...
-
동시에 학사 두개 준비 가능??
-
탐구 털려서 다시하면 ㅠ 수학은ㅜ뭐해야할까요 기출은 보기만 해도 그간의 고생이...
-
(전과있는사람한테 같이사는조건으로 계약서쓰고 수능준비한다는썰) 씨발 말이되냐고 ㅋㅋㅋㅋㅋ
저..왜 저는 이 문제가 교재에 없을까요?
수능완성 실전편은 미통기에만 있는거 아닌가요?
작년교재이신가..
아, 이과는 실전편이 수학2에 붙어있어요. 이건 가형 4회 21번이었네요..
답이 5번인가요??
네, 답은 5번이 맞아요
저는 벡터분해로 풀었어요.
OA벡터를 직선L 방향성분 과
직선L에 수직인 방향성분으로 분해를 해요.
OB벡터도 직선L방향성분과
직선L에 수직인 방향성분으로 분해를 해요.
이 때 점B는 점O를 중심으로 하고 반지름이 1인 원 위에 놓이죠. (물론 평면β 위에 있어요.)
그럼 OA와 OB를 내적하면
(OA벡터의 직선L 방향성분) · (OB벡터의 직선L방향성분) + (OA벡터의 직선L의 수직방향성분) · (OB벡터의 직선L의 수직방향성분) 의 값과 같아요.
그러면 사인과 코사인의 합 형태가 나오는데
삼각함수 합성하셔서 최댓값을 구하시면 되요.
저도 일단 벡터분해로 풀었는데 해설에는 그냥 두개 평면 그려놓고 교선에다가 OA하나 찍 그려놓고 밑에 수선떨궈서 풀었나요?
그냥 기하로 풀자면 OA의 종점 A에서 평면 베타에 수선의 발을 떨구면 각이 최소가 되는게 확실하므로 많이 보던 그림이 나오네요. 그림은 그냥 평면 두개가 교선에서 만나고, 한쪽 알파 한쪽 베타 잡고 OA 그려서 A에서 베타로 수선 떨어뜨리면 됩니다.
저게 점A에서 베타로 떨어뜨린게 각이 최소가 되는것은, 평면이랑 한 점에서 만나는 직선이 이루는 각의 크기의 최솟값을 구하는 문제니까 이렇게 됩니다.
무슨말인지 잘 이해가 안가신다면 OA랑 베타만 남겨두고 평면 알파를 지워보시면 왜 수직으로 떨어뜨리면 최소가 되는지 아실겁니다.
저도 비슷한 사고로 풀긴 했는데요.
전 처음에 <1 ) 직선OB에서 평면 알파(직선OA)로 수선>을 그었었거든요..
그렇게 구하니까, 답이 (루트5)/5여서 보기에없어서 (아마 각이 좀 더 컸겠죠 1) 과정이)
반대로 이번엔 <2) 직선 OA에서 평면 베타(직선OB)로 수선> 그어서 말씀해주신 과정으로해서 답을 구했꺼든요.
이 과정에서 1) B->A 수선 내릴때랑 /
2)A->B 수선 내릴때
어떨때 각이 더 작은 지는 어떤식으로 알아야되나요?
글 올렸다가 보셨을거라고 생각해서 지웠습니다. 못보셨다면... ㅡㅜ
저는 B에서 내리는 경우 자체를 생각을 할 필요가 없었습니다.
저는 내려서 타원에 등고선 그어서 풀었습니다...