대학 확률분포 문제 질문이요
joint PDF fX,Y(x,y) = 1/a^2 , 0≤x≤a, 0≤y≤a , a>0
= 0 , otherwise
이때, W = max (X/Y , Y/X ) 일 때, W의 CDF , PDF 구하라
하필 이 문제만 풀이가 없네요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][중앙대학교 커리어 가이드 (해룡당)] 19
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
그게 낭만이니까 ㅇㅇ
-
전화추합안되나이거
-
땀 뻘뻘흘리면서 2
어우더워
-
두어번 해봐서 힘들다 혹은 더 이상 할 의욕이 예전만큼 없다는 걸 스스로가 느낀다면...
-
그럼 오티 가면 수시애들은 이미 지들끼리 친해진거임? 3
아오시발 정시 서러워서 살겠나
-
술 먹고싶다 4
-
며칠후에 갑니다 팁 있으면 알려주세요 뒷풀이 안가는데도 친구 사귈 수 있나요? 너무 떨리네요
-
오르비 2
-
사문지구로 볼예정인데 방학때 개념기출까지만 해도되나요? 수학이나 국어가 되게 급해서요;
-
이거 정시차별이여
-
저는 23수능 화작 컷보고 기겁함
-
마라탕2만원정도먹고ㅡ>도넛 루틴됨 맘먹고찾으면특정되겠네
-
학교 도서관 으흐흐 15
자 이제 도서관에서 절 찾아보세요 절 찾으시면 오늘 저녁 사드립니다
-
원래는 하나하나 꼼꼼히 대조하고 본문 찾아서 풀고 그러는데 카페인 먹으면 걍 감에...
-
고민 좀 더 해볼거같긴한데 하게된다면 수능때 영어 미끄러져서 확실히 잡아두고싶은데
-
집회X발
-
사라지기 4분전 4
잇올.. 그들이 오고있어 시간을 멈춰야만해
-
https://youtube.com/shorts/Moc49qvc08c?si=cMVlP...
-
2025 수능성적표 여기서 시작하는데 매일 1,2년 14시간 순공하면 올 1 되는지...
-
엉덩이가 아파 1
엉덩이 운동 하니까 엉덩이가 아프다
-
어떤게 재밌나요
-
유쾌 유쾌 한가요 아님 좀 음침한가요
-
맞팔구 8
-
히고 먹어보고싶다....... 진짜 ㅈㄴ 맛있을듯
-
한양 맛집 8선 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
안녕하세요..! 지구과학을 좋아하는 현역학생입니당 심심할때마다 문제를 만드는데요!...
-
확실히 물2가 재미있긴 하네
-
전 얘가 제일 좋더라고요
-
ppt 만들어서 발표할껀데 검토해주실 분 계심요?
-
표본 어느정도 들어왔나요? 설경 낸건 아닌데 궁금해서.... 중상위 표본들이 좀 들어왔나요?
-
메인 ㄷㄷ
-
수능에서 2맞는건 좀 껌이구나;;
-
오후에 일어나본거 인생에서 첨임...;;;;;
-
여자되고 싶다 20
내가 여자였으면 진짜 하루종일 ”그거“ 할듯
-
ㄹㅇ ㅇㅇ 근데 이걸 칼럼이라할수있나?그냥 썰이라할까?
-
여자한테 저렇게 왔으면 좋았겠다..하고 내 인스타그램 별명설정을 여자이름으로 해둔거였구나
-
전 60점
-
나 친구(남자)들한테 맨날 심심할때 @@아 뭐해? 보냈는데 ㅅㅂ
-
강북도 그닥인가
-
시간당 3만원이면 단과보다 비싼데 그만큼 효율이 있나
-
통합사회와 한국지리는 전혀 접점이 없고 문제도 지리 교사가 낸 것같지 않지만...
-
백분위 0 5
상위100%
-
이대 조발 ㅈㅂ 3
조발 안하기로 유명해서 할 가능성은 없지만 그래도 15일을 언제 기다려 OTL
-
밥도 맛있게 드셨으니 식음을 전폐하고 조발을 기다리는 우리에게 감격의 발표를..!!...
-
얍얍 15
오르비 죽어라 얍얍
-
불확정성 원리에 완전 꽂혀가지고 왜 그런지 알아보기 위해서 행렬을 공부하고 이해해서...
X, Y는 0과 a 사이의 값을 가지는 연속확률분포이므로, 일반성을 잃지 않고 X, Y > 0 이라고 가정하여도 무방합니다.
그러므로 w ≤ 0 이면 P(W ≤ w) = 0 입니다.
이제 w > 0 이라고 가정합시다. 그러면
W ≤ w
⇔ max(X/Y, Y/X) ≤ w
⇔ X/Y ≤ w 그리고 Y/X ≤ w
⇔ X ≤ wY 그리고 Y ≤ wX
입니다. 그런데 만약 w < 1 이면, X ≤ wY ≤ w²X 인데, X > 0 이므로 이 부등식을 만족시키는 X의 값은 존재하지 않습니다. 따라서 w < 1 이면 P(W ≤ w) = 0 입니다.
그러므로 w ≥ 1 이라고 가정합시다. 그러면
P(W ≤ w) = P(X ≤ wY 그리고 Y ≤ wX)
인데, 어차피 f(x, y) = 1/a² 인 영역은 0 ≤ x ≤ a, 0 ≤ y ≤ a 이므로, 이 정사각형 영역 내에서 부등식 x ≤ wy, y ≤ wx 에 의해 주어지는 영역의 넓이만 구해서 1/a² 배를 해주면 원하는 확률을 얻습니다. 이때, 주어진 영역을 그래프에 그려본 후 간단한 기하학적 논리를 펼치면
P(W ≤ w) = 1 - (1/w)
임을 알 수 있습니다. 물론, 주어진 영역 위에서 결합확률밀도함수의 적분을 계산해도 상관 없습니다만, 귀찮은 건 피해야지요. 어쨋든 그러므로 우리는 W의 cdf F(w)를 찾았고, 다음과 같이 주어집니다:
F(w) = 1 - (1/w) (w > 1)
F(w) = 0 (w ≤ 1)
따라서 W의 pdf p(w)는
p(w) = dF/dw
= 1/w² (w > 1)
= 0 (w < 1)
입니다.