극값의 정의가 ㅜ
f(x)<=f(a) 이면 x=a에서 극대가 된다고 한다.
책에 나와있는 극값의 정의인데요.
등호가 빠져야 하는 것 아닌가요?
글고, 제가 항상 수학공부할 때, 말 하나하나 따져보는
습관이 있는데요. 빨리빨리 진도나가고 싶은데,,
하나 걸리는게 있으면 그걸 확실히 알아내기 전까지 못넘어가요 ㅜㅜ 미치겠네요.
별 쓸데도 없는 내용가지고 시간만 잡아먹는데 어떻게 하면 좋을까요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질받< 이거 좀 0
어감이 야하지 않음?
-
음주 on 0
술은 몽키숄더
-
언매 쌩노베임 대성패스만 있음 김승리? 유대종?
-
아까 옥스퍼드 얘기 하시는 분 계시던데 댓글에 꽤 비아냥이 많긴 했지만 본질 자체는...
-
본인 폰 기종 적고가3 20
난 z플립6
-
진짜 매일 잠도 못 잘 정도로 스트레스 받아요.... 제발 40점... 제발...
-
88점
-
바롲 저였군뇨
-
요즘에 거의 대탈출만버는듯
-
자러갈게요 8
다들 좋은 밤 되세요
-
1칸인 점수가 나보다 높다고?
-
이제 자야지
-
대성에서 국어 인강을 들으려고 하는데 김승리가 좋나요 유대종이 좋나요 현재 등급은...
-
물론 여자들이 좋아할만한 아이돌같은것도 딱히 관심없어서 특정 관심사가 엄청 통한다...
-
언매 처음 시작하는 노베입니다 12월 안에 개념 한바퀴 돌리고 싶은데 2025 대비...
-
술만안마신다고빼는거좀그러네...
-
옯스타 만들면 7
뭘 하는거죠???
-
삼수하면서 진짜 열심히 한거 같은데.... 참 안오르는 과목은 쉽지 않네요. 다들 파이팅입니다
-
텔그 현상황 ㅋㅋㅋ 진짜 벽느껴짐
-
저 진짜 크림왕창들어간거나 팥 왕창들어간 빵 좋아함 1
진짜 빵순이어서
-
진짜 자야겠다 3
이러다 밤낮 바뀌겠어
-
유사스포츠라서 그런가 흠,,,
-
겨울 방학때 최대한 성적 올려야 하는데
-
학원에서 진짜 이렇게 분석한 거에요?
-
질문받습니다 7
감사합니다.
-
자기전에 질받 받을래뇨 17
분명 질문 많이 해주겠지?
-
예비고3 메가 설명회 가는사람 있음? 궁금한거 있는데 총 인원이 몇명임? 안내문에 안써있음;
-
엄마 몰래 버거킹 더블불고기와퍼 먹음뇨 근데 저녁에 몸무게 재니까 오히려 살 빠져 있어서 놀랐음뇨
-
왜 올해만 이래 0
아니 올해 수학 작수랑 비슷한데 왜 올해만 88 89냐고고고고고고ㅠㅠㅜㅠㅠㅠㅠㅠㅠ 85로 해줭.
-
금사빠였는지 좋아하게된 이유를 모르겠음 근데 좋아했다고 하기에는 애매하고 걍 관심만...
-
프로미스나인 4
영원하라
-
네
-
누가봐도 나밖에 만들 사람 없음
-
하 ㅅㅂ
-
최후반까지 기본에 충실했던 사람은 결국에 웃는다.
-
아씨발 12
아침에 보일러 틀어놓고 나갔다가 방금 퇴근함...
-
90 92 88 47 50인데 서울대 낮은과도 못감 5
언미물1화1 서울대가 이렇게나 빡세구나... 농대가 2-3칸 뜬다..
-
ㅠㅠㅠ
-
국어가 93인지 95인지 모르겠네 95면 어떤 최악의 경우라도 선방ㄱㄴ이고 93점에...
-
저기요 2023 아조시.
-
아 프나 에반데 3
이제 막 입덕햇는데 이제 이 야랄 못본다고? 아..
-
그냥 집에서 재미로 쳐봤는데 3 나오려나...
-
인강 처음봐요 여기저기 찾아보다 혼란만 가중 수시러임.. 메가랑 대성 있음 지금까지...
-
이번 부산 여행에서는 국밥 말고 다른 것도 먹어 볼까요 10
저번에 2박 3일 부산 혼자 여행 갔을 때 삼시세끼 다 국밥만 조졌는데 흠... 아...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 과거의 나야 이런 댓달 시간에 공부 좀 하라고
-
지금이더제정신이아닌거같아
-
눈 위에 피멍 들고 아직 큰 붓기 있음
-
선호도 순으로 연대 언더우드 hass> 서성 상경 > 서성한 공대 > 서성한 기타과...
-
음…
미분했을때 a중심으로 기울기가 +에서-로바뀌거나 그반대면 극값같는거 맞는것같은데요;;
그책이름이뭐에요? 아니뭐 그냥 궁금해서요 ㅎ
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
음.. 결론만 보면 극값이 맞아요.
제가 고등학교 교과서에서 본 극값의 정의는 '증감이 변하는 점' 이구요
대학교1년 Calculus 책에서 본 정의는 Local Maximum(Minimum) 이라구 임의의 구간을 잡았을 때
구간내에서 최대(소)가 되는 점을 극값으로 정의해요. 여기서 구간을 +-무한대로 잡으면 극대값=최대값이 되겠죠??
보신책에서는 구간을 제대로 안잡아놓고 그냥 써놓은거같은데 극값⊃최대(소)값 이니까 틀린표현은 아닙니다