17수능 30번 나형 풀이
제가 17수능 나형 30번 풀때는 이렇게 풀렸거든요..ㅜㅜ
근데 다른 해설강의 보니까 무슨 {g(x)}²+2{g(x)}로 놓고 풀던데
이렇게 풀어도 되나요???
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 1
다들 기분좋은 불금 보내요
-
두고봐 네가 이기나 내가 이기나 해보자
-
기상 완료 오늘 알바 대타가야됨 ㅇㄴ
-
간밤에 6
두명 탈릅에 한명 팥췬가
-
드론 전문가면서 0
각운동량 보존 법칙을 모른다는 사실이 매우 개탄스럽다.
-
얼버기 2
오늘도화이팅이에여
-
5분 휴식 3
하하
-
얼버기 1
-
카페인도 끊었는데 잠이 안옴
-
작년에 한양대 공대 붙여놓은 후 1학년 1학기에 모든수업 빠지고 학사경고 받고...
-
대학 2번 옮기고 군대까지 다녀온 형 보면 난 아님ㅎ
-
히히 1
우히히
-
ㄴ 이분 바보 1
11시에 깨워쥬
-
가 뭔가요? 몇개년치 자료에서 다 평균 합격점수는 글리가 1위네요..
-
뭐 이런소리 나는데 눈 땜에 뭐 무너진거 아님?? 인근에 나무도 막 무너지고 그랬는데… ㅠㅠㅠ
-
3ㅎ5 진학사 입력한사람들은 23명중10명 충족인데 몇퍼정도 예상되나요? 23...
-
강의실에서 n제 풀어야겠음 갑자기 속 뒤집어지네 이런 학교 못다니겠다
-
좆반고 내신7 0
내신7등급인데 논술감점 클까요 단국대 논술썻는데 납치당할까 두려워요ㅔ
-
근거가 많이 없는 불안함인 거 같은데 내년엔 일단 그냥 돈 벌 길 만드는 거랑...
-
노베 기출코드 2
김성은 커리 타려는데 기출 100제는 양이 좀 적은거 같아서요 기출만 양승진...
-
허...
-
노베라 김성은 커리 타려는데 기출 100제 양이 적은 거 같아서요 기출만 다른 강사 강의 들을까요?
-
10분휴식 4
하하하 즐겨야 한다 하하하
-
국어 커리 고민 1
공통 2틀 언매 4틀(ㅅㅂ) 인데 언매에서 21분 박고 폭사했음 솔직히 언매에서...
-
국어 커리 고민 0
25 수능 언매 원점수 78점(독서 7틀, 문학 2틀) 독서 내용 확인, 추론 엄청...
-
줘어어어
-
진찌 세상엔 머리 좋은 사람이 너무 많음뇨
-
아 내일 복귀네 2
복귀하고 공부 다시 시작해여겠다
-
뉴비네요
-
제발제발쪽지부탁드립니디두ㅡㅜㅜㅜ
-
ㄹㅈㄷ 몰카인가 생각했네
-
질문있는
-
10분휴식. 8
-
아 ㅈ됐네 2
어제 저녁 먹고 잤는데 왜 일어나니까 4시냐
-
그럼 지금 고속 자체가 의미 없지않나 차라리 담임쌤도르가 더 의미있는거임?
-
하지만 우리의 윽건이는 ‘꼬우면 재수하지 말지 그랬어’로 받아쳐서 그 누구도 더...
-
어이 내일의 나 4
일어나면 게시글 밀어라
-
잔다 4
르크
-
들 때가 있음 디시콘은 종류가 다양해서 다양한 감정을 표현할 수 있는데 오르비...
-
자야겟뇨 4
오늘도 암것도 안햇뇨
-
역시 하루종일 침대에 누워있는게 맞음 남자는 허리가 생명
-
발뻗잠 3
-
덕코 받고 싶다 6
-
목시 강기원 들을 건데 피시방가서 해야하나 강기원 30초컷이라던데 맞음?
-
블라글 지워주실 수 있을까뇨,,
-
글젠은 없다니
-
우흥
-
ㄷㄷㄷㄷ
-
현지에서 살다온 사람들은 무슨 지랄을 떨어도 이길 수 없음
-
밖에서 무ㅜㄴ소리가났는디 지금 3시33분에다가 지금밤새는데 무섭고 아니 하 디지라칸다
중간에 왜 갑자기 h(x)랑 f(x)의 그래프를 비교?
4f'(x)+12x-18(=h(x))이랑 f'(g(x))가 [0,1]에서 실근을 가진다는 말이 두 함수가 [0,1]에서 만난다는 말이랑 똑같아서 끝점들?기준되는점들?을 경우를 나눠서 구했어요! x=0, x=1/2(극솟값), x=1 에서요!
아아 왼쪽에서 f(x)그래프 그린건 y축을 x축으로 보면 g(x)가 돼서 그거때문에 비교한거예용! 그걸 안썼네요ㅠㅠ
왜 g(x)를 그리시는 거? f'(g(x))와의 교점 아님?
일단 경계가 아닌 중간 부분에서 최대를 가질 수 있는 건데 고려 안 하신 부분의 논리적 비약을 떠나서 풀이가 잘 이해가 안 됨 왜 f'g가 아니라 f를 그린 건지 설명좀
아아 일단 왼쪽페이지에 왼쪽그래프는 f'(g(x))라고 써야되는데 f(x)라고 잘못썼네요ㅠㅠ 저건 수정해야되구요ㅠㅠ! 오른쪽 그래프는 f(x)의 그래프를 알면 어차피 x랑 y값 바꾸면 g(x)그래프가 되니까 그린거구요!일단 f'(g(x))와 h(x)가 [0,1]에서 실근을 가져야 된다했는데 구해야되는건 k의 최솟값과 최댓값이니까 h(x)를 그래프로 그렸을 때 두 함수의 교점을 구간의 끝값인(0,6), (1/2,3)과 극솟값인 (1,6)으로 나눠봤어요! 그렇게되면 f'(g(0))=6과 f'(g(1/2))=3과 f'(g(1))=6이라고 표현할 수도 있잖아요! 여기서 g(0), g(1/2), g(1)값을 구하고 이 값과 f(x)그래프의 값을 구해서 같다고 했어요!!(f(x)그래프의 x축과 y축을 바꾼게 g(x)가 되니까용!) 한마디로 한번 해체를 했다고 해야되나..ㅠㅠ
교점을 왜 특정 지점에서만 관찰했죠? 거기서의 최대가 전체의 최대임을 보장해주나요?
헐 너무 늦게 확인했네요 죄송해요ㅠㅠㅠ 구간이 [a,b]인 이차함수에서 최댓값과 최솟값을 구할 때 x=a 또는 x=b 또는 x=a+b/2(대칭점) 을 이용해서 구하잖아요! 그거 생각하고서 구한건데.. 여기서 구하려는건 이차함수인 h(x)에 들어있는 실수k 값이니까요! 그렇게 생각하고서 풀었는데 으 저도 말을 자꾸 이상하게 하네요 정확히 딱딱 풀이를 말씀드리고 싶은데 죄송해요ㅠㅠㅠ
헐 다시 생각해보니 제가 지금까지 완전 잘못 생각하고 있었네요ㅠㅠㅠㅠㅠㅠ감사합니다
0과 1/2, 1에서 만난다고 놓고 푼건가요?? 일단 정의역 자체가 다르기 때문에 만난다 놓고 풀면 안되고 비교하면서 푸는게 맞는 거 같은데.. 이해가 잘 안됨ㅠㅠ
아아 만난다는건 잘못 쓴거구요! 비교하면서 푼거예요!! 0인 케이스, 1/2인 케이스, 1인 케이스 이렇게용!