공부할때 유용한 두번째 팁 : 연관된 개념을 찾아서 연결하면서 공부하세요.
공부할 때 유용한 기본적인 팁 : http://orbi.kr/00011496737
이 글에서 개념을 연결해서 정리하라는 말을 했어요.
위 글에서도 말했지만,
개념의 공통점과 차이점을 찾아 정리하는것.
이 매우 중요하며, 그만큼 중요한 것이
개념과 개념간의 연관성을 찾아 정리하는 것.
입니다. 이 두가지를 목차를 통해서 공부를 하시면 충분히 독학 가능하실거에요.
그런 의미에서 어떻게 해야 실제로 정리할 수 있을지는 예전에 글로 쓴적이 있는데 재업합니다.
dx의 의미는 무엇일까요? 분명 미적분에서 많이 봤습니다.
합성함수의 미분법, 치환적분법..등 많이 쓰이는 식입니다. 이것의 의미에 대해 한번 살펴볼게요.
먼저 미분계수의 정의에서 dx는 아주 작은 x의 변화량입니다.
이 식에서 h는 순간적인 x의 변화량을 뜻하며 다르게 표현하면 입니다.
분자에 있는 f(a+h)-f(a)는 순간적인 y값의 변화량입니다.
또한 어떤 x값에서의 미분계수가 함숫값이 되는 함수를 생각할 수 있는데, 이것이 도함수입니다.
이렇게 쓰여지고, 이 식에 의해서 도함수를 실제로 유도할 수 있었습니다.
이제 f(x)의 도함수를 구하는 것을 f(x)를 x로 미분한다라고 표현하게 됩니다.
정리하자면, 에서 dx의 의미는 두가지입니다.
1. 순간적인 x의 변화량
2. x에 대해서 미분하라는 기호.
이제 교과서의 미분법 중 합성함수의 미분법, 역함수의 미분법과 매개변수 미분법을 살펴봅시다.
합성함수의 미분법 :
역함수의 미분법 :
매개변수를 이용한 함수의 미분법 :
2의 의미를 생각해보면, 이 식의 의미는 y를 u로 미분한 것에, u를 x로 미분한것을 곱하는 것입니다.
하지만 1의 의미로 생각해보면 du는 아주 작은 u의 변화량입니다.
아주 작은 수로 생각하면 사칙연산도 가능하지 않을까?
라는 아이디어로 곱셈으로 연산해주면 좌변의 식이 나옵니다.
역함수의 미분법과 매개변수를 이용한 함수의 미분법도 마찬가지의 방법으로 이해할 수 있습니다.
이제 적분을 한번 봅시다.
부정적분의 정의는 미분의 역 연산입니다.
어떤 함수 f(x)의 부정적분이란 미분해서 f(x)가 나오는 함수를 뜻합니다.
식으로 쓰자면 이 됩니다.
여기에서의 dx란 x에 대해서 적분해라 하는 뜻입니다.
부정적분의 의미는 여기까지입니다. 그저 미분 거꾸로의 의미입니다.
이제 정적분의 정의를 생각해봅시다.
정적분의 정의는 함수 f(x)가 구간 [a,b]에서 연속이고 항상 f(x)>0일때
구간 [a,b]를 n등분 하여 양 끝점을 포함한 분점을 차례대로
이라하고
각 소구간 의 길이를 라 할 때 n등분 했으므로 소구간의 길이는 일정합니다.
이렇게 말이죠.
이때 는 를 밑변으로 하고 k번째 분점의 함숫값을 높이로 하는 직사각형의 넓이입니다.
그렇다면 의 뜻은 함수를 n개의 직사각형으로 쪼갠 후 그 넓이를 n개 모두 더했다는 뜻이며,
구분구적법에 의해 는 a부터 b까지의 y=f(x)의 그래프와 x=a, x=b로 둘러싸인 넓이를 뜻하며
이렇게 표시합니다.
요약하자면 여기서 dx의 의미는 결국 밑변의 길이, 즉 x의 변화량입니다.
적분에서도 dx의 의미는 두가지입니다.
1. x의 변화량, 즉 밑변의 길이
2. x에 대해 적분하라는 기호
여기서 중요한 정리 하나가 탄생합니다.
바로 '미적분학의 기본정리'입니다.
미적분학의 기본정리의 핵심은,
x에 대해서 정적분한 것을 다시 미분하면 원래함수 f(x)가 된다는 것입니다.
우리는 미분하면 f(x)가 되는 함수를 배웠습니다. 바로 부정적분이죠.
부정적분도 미분하면 f(x)가 되고, 정적분도 미분하면 원래함수가 됩니다.
즉, 부정적분과 정적분이 같을 수도 있다는 것입니다!
이것으로 인해 우리는 정적분의 계산을 극한이 아닌, 부정적분으로 할 수 있게 되었고
식으로 쓰면, f(x)의 부정적분중 하나를 F(x)라 할때,
가 됩니다.
한번 더 생각해봅시다. 우리는 dx의 의미를 두가지로 해석했는데
1. x의 변화량
2. x로 적분하라.
1번의 의미는 정적분에서의 의미와 유사합니다. 밑변의 길이 역할을 하겠죠.
2번의 의미는 부정적분의 의미를 갖습니다. 연산기호죠.
이제 우리는 미적분학의 기본정리를 통해서, 1번과 2번의 의미가 같을 수 있음을 알았습니다.
이제 치환적분법에 대해서 알아봅시다.
에서 이 함수는 적분하기 어려운 형태입니다.
우리는 y=sin x 혹은 y=x+3 과 같은 x에 대한 함수를 적분할 수 있었습니다.
하지만 y=sin (2x+3)은 적분하기 힘든 것이, 적분공식에는 없었기 때문입니다.
(사실 적분이 어려운 이유는, 미분법은 도함수를 유도하는 공식이 있었지만,
적분에서는 공식이 없이 미분 거꾸로로 정의되기 때문입니다.)
이제 위 식에서 g(t)를 x로 치환해봅시다.
가 됩니다.
여기서 문제가 발생합니다. 적분하려고 하는 함수는 x에 관한 함수인데, 기호는 dt입니다.
우리는 dx가 필요합니다. 적분하려고 하는 함수의 문자는 x이기 때문입니다.
그래서 dx를 만들어주고 싶습니다. 한번, t에 대한 x의 변화량을 생각해봅시다.
인데, 이때, dt는 순간적인 t의 변화량이므로
양변에 같은 dt를 곱해도 식이 성립합니다.
따라서 가 되며 식은
가 됩니다. 단 c는 적분상수입니다.
이것은 dx가 x에 대해 적분하라는 연산기호이기 때문에,
치환을 해주어 x에 관한 함수로 만들었을 경우, 연산을 위해 dx가 필요하기 때문입니다.
정적분에서의 치환적분은 부정적분과 거의 비슷합니다.
결국 치환을 한 후 그 치환한 문자에 대해 적분할 수 있도록 기호를 바꾸어 주면 됩니다.
그래야 그 문자에 대해 적분연산을 할 수 있을테니까요.
하지만 dx의 의미는 x의 변화량입니다. 만약 t로 치환되어, dt가 생겨날 경우
t의 변화량은 x의 변화량과 다르죠. 그렇기에, 정적분에서 위끝과 아래끝이 달라집니다.
예를들어, 가 되는데, 이것은 이기 때문입니다.
(여기에서, 수식으로 계산해보면 달라질 수 있지만, 적분에서는 어떤 구간을 n등분한 것이 밑변이 됩니다.
즉 dt는 x에 따라 결정되는 t의 구간을 n등분한 것이 됩니다.)
dt는 어떠한 t의 구간을 n등분하여 나눈 그 구간 하나의 길이입니다.
dt는 정적분의 위끝과 아래끝으로 결정되기에, 자연스럽게 그 구간의 길이가 달라질 경우,
위끝과 아래끝이 달라집니다.
사실 dx의 의미는 어찌보면 쉬운 개념입니다.
하지만 미적분의 많은 부분에서 생각해볼만한 여지가 있는 개념입니다.
개념학습에서 이러한 부분까지 생각해보았는지 점검하세요.
이렇게 연관짓고 이어가며 정리해야 합니다.
스압이기 때문에 요약하자면
1. 목차 파세요.
2. 공통점 차이점 찾으세요.
3. 개념 연결지으세요.
4. 목차 한번 더파세요.
여러분 화이팅.
나중에 칼럼도 더올릴게요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어느길로갈까요 2
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 3
왜 힐이안되냐
-
지금 0돈데 입은 옷은 반팔에 바시티가 끝입니드 20분 걸어야하는데 가장 따뜻하게...
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 1
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 1
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
올라가볼까요?
읽었어요???ㅠㅠㅠㅠ
잘 읽었습니다~ 여태까지 목차는 아무 생각 안하고 넘겼는데 생각해보고 넘겨야 겠네요
감사합니다.
가독성이 떨어져서 안읽으시는듯한데.. 꽤 좋은내용인데 읽어주시죠..ㅠㅠ
좋은글 올려주셔서 감사합니다. 가독성이 좋고나쁜건 우리들이 판단할문제가 아니라봅니다.
정성껏 칼럼 올려주시는것만 해도 수험생입장에서 받아들이고
본인들이 꺠우쳐가야죠.
다음 칼럼에는 PDF로 도 첨부해서 글과 올려주시면
우려하시는 가독성 문제는 해결될것같습니다.
칼럼은 인쇄해서 뽑아서 꺠우치는 맛이 있거든요~
항상읽고 갑니다~
아.. ㅂㄷㅂㄷ ㅇㅋㅇㅋ 다음에는 한글파일로 만들어볼게요
좋은글 감사합니닷!
감사합니다!
저같은 독학러에게는 정말 좋은 조언입니다.
독학생...ㅠㅠ 응원합니다.
댓글 달려고 로그인해ㅛ습니다!!좋은 글 감사합니다~
헐.... 감사합니다.
호오... 제가 하던 방법과 동일하네요
제가 하던 방식이 맞다는걸 확인하고 다시 열심히 해보겠습니다
이거 공부 천재들이 하는 방법인데...
님도 공부천재?
지금 일반물리학 인강듣는데 거기 선생이
전국 차석한 사람이에요.
근데 그 사람이 하는 말이랑 똑같네요.
개념간의 연결중요. 너무많은 정보를 케바케로 정리하기 힘드니 공통점으로 묶은후 차이점으로 분류.
제가 보기에 님이 노력해서 공부를 잘한것도 있지만
공부천재들의 관점을 님이 깨우쳤든 원래 갖고 있든
가장 공부에 최적화된 관점을 가졌기에 다른 사람들이 그토록 원하는 기적이 님한테 일어난거 아닐까 생각해봅ㄴ다. 굉장히 좋은 글이네요
그냥 그렇게 해야 제가 이해가 가능했었던것 같아요.
그게 특별한건 아닙니다.